Luminance-depth reconstruction from compressed time-of-flight histograms - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Article Dans Une Revue IEEE Transactions on Computational Imaging Année : 2022

Luminance-depth reconstruction from compressed time-of-flight histograms

Résumé

Single photon avalanche diodes (SPADs) combined with high-frequency time-to-digital converters (TDCs) enable the estimation of photon Time-of-Flight (ToF) for active 3Ddepth imaging. Nevertheless, SPAD sensors still face hardware limitations due to a complex pixel readout design and a large amount of data collected by way of pixel-wise histograms. The intrinsic high background illumination (BI) also remains a challenging issue for the related depth reconstruction algorithms. Using a physically-relevant SPAD sensor model, this work tackles these issues by implementing a pixel-wise ToF histogram compressive sensing (CS) with a specific deep generative model based reconstruction. It demonstrates a possible reduction of hardware design constraints while reaching a depth inference Root Mean Square Error below 16 centimeters regardless of BI (50 – 1050 W/m2 ) and distance (20 m), at a compression ratio (CR) of 10% (32 CS measurements). In addition, this paper introduces a novel multimodal reconstruction from SPAD data, enabling joint depth and luminance estimations. Indeed, since ToF histogram raw data gathers multiple physical scene characteristics, we propose a twopart DGM capable of inferring Super-Resolved depth maps and normalized luminance images, independently from the average scene BI. Our key contributions related to the DGM topology design are proper normalization layers with a learned pile-up effect compensation, multidimensional-multiscale filtering and concatenations of Softmax-ReLU activation functions to capture both peak-position and relative amplitude features. Numerically, depth and luminance maps reconstructions of natural scenes respectively reach more than 30dB and 25dB PSNRs for any CR higher than 2.5%.
Fichier principal
Vignette du fichier
TCI_revised_version.pdf (3.86 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-04557424 , version 1 (24-04-2024)

Identifiants

Citer

Valentin Poisson, Van Thien Nguyen, William Guicquero, Gilles Sicard. Luminance-depth reconstruction from compressed time-of-flight histograms. IEEE Transactions on Computational Imaging, 2022, 8, pp.148-161. ⟨10.1109/TCI.2022.3149088⟩. ⟨cea-04557424⟩
20 Consultations
22 Téléchargements

Altmetric

Partager

More