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Luminance-depth reconstruction from compressed
Time-of-Flight histograms

Valentin Poisson, Thien Van Nguyen, William Guicquero and Gilles Sicard

Abstract—Single photon avalanche diodes (SPADs) combined
with high-frequency time-to-digital converters (TDCs) enable
the estimation of photon Time-of-Flight (ToF) for active 3D-
depth imaging. Nevertheless, SPAD sensors still face hardware
limitations due to a complex pixel readout design and a large
amount of data collected by way of pixel-wise histograms.
The intrinsic high background illumination (BI) also remains a
challenging issue for the related depth reconstruction algorithms.
Using a physically-relevant SPAD sensor model, this work tackles
these issues by implementing a pixel-wise ToF histogram com-
pressive sensing (CS) with a specific deep generative model based
reconstruction. It demonstrates a possible reduction of hardware
design constraints while reaching a depth inference Root Mean
Square Error below 16 centimeters regardless of BI (50 – 1050
W/m2) and distance (20 m), at a compression ratio (CR) of 10%
(32 CS measurements). In addition, this paper introduces a novel
multimodal reconstruction from SPAD data, enabling joint depth
and luminance estimations. Indeed, since ToF histogram raw data
gathers multiple physical scene characteristics, we propose a two-
part DGM capable of inferring Super-Resolved depth maps and
normalized luminance images, independently from the average
scene BI. Our key contributions related to the DGM topology
design are proper normalization layers with a learned pile-up
effect compensation, multidimensional-multiscale filtering and
concatenations of Softmax-ReLU activation functions to capture
both peak-position and relative amplitude features. Numerically,
depth and luminance maps reconstructions of natural scenes
respectively reach more than 30dB and 25dB PSNRs for any
CR higher than 2.5%.

Index Terms—3-D imaging, computational imaging, LiDAR,
low-light imaging, poisson noise, single-photon detection, Time-
of-Flight imaging, Super-Resolution, statistical compressive sens-
ing, multi-modal, deep generative model.

I. INTRODUCTION

Since the invention of SPAD CMOS sensors in 2003 [1],
several specifications such as power consumption, timing
resolution, dynamic range, and pixel-level processing notably
improved the performances of these sensors. Indeed, it enabled
their use for a wide range of emerging imaging application
domains like, medical imaging [2], astronomical imaging [3],
lidars [4] and light communication [5]. To address mass-
market industrial sectors (e.g., automotive [6]) with high-end
performances, the current trend is to develop larger SPAD
arrays [7] benefiting from advanced technology nodes, using
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3D-stacking (3D-IC) [8] to enhance capabilities at a reduced
power consumption and a smaller footprint than 2D-IC [9].

This paper will focus on direct time-of-flight (D-ToF)
imaging which consists in measuring the round trip time of
a light pulse whose laser source is synchronized with the
sensor [10]. Unlike Indirect Time of Light (I-ToF) in which the
depth measurement is performed by estimating the phase shift
of a continuously modulated light wave [11]–[13]. However,
although SPAD based D-ToF sensors now offer a competitive
depth accuracy compared to the alternatives(e.g., 1.6mm at 3m
[14]) , they still face several hardware constraints which limit
higher image formats (i.e., number of pixels) with a reduced
pixel pitch, better timing accuracy (i.e., depth precision) and
increased temporal resolution (i.e., frame rate).

A SPAD-based Time-correlated single photon counting (TC-
SPC) sensing generally consists in detecting incident photons
and storing measured times of arrival in a histogram, in order
to estimate the statistical distribution over a large number
of pulse periods. Depending on incident photon flux, the
histogram may include a lot of photon arrival times due
to ambient light, in addition to the ones from the gated
laser pulses. A major constraint is thus related to photons
from the background illumination (BI) which are not issued
by the synchronized active illumination. In other words, the
extraction of useful information in such a high BI turns out
to be complex. Indeed, in some cases more than 99% of the
detected photons may come from BI [15].

Furthermore, SPAD sensors are mainly limited by the
memory requirements related to the ToF histograms. Let’s
take the typical example of a 10-bit coded ToF value, the his-
togram would therefore be composed of 1024 bins providing
measurements with a resolution of 1cm for a depth range of
10m. To retrieve a relevant distribution of ToF values, each bin
must have a counter with a sufficient bit-depth (e.g., 10bit).
In this example, the per-pixel memory is therefore of 10kb,
thus involving a large silicon surface at pixel-level. Finally, the
overall sensor data throughput remains another crucial point,
which also relates to spatial resolution. The current trend is to
increase the spatial resolution to reach the so called Megapixel
resolution or beyond. However, with only a VGA pixel matrix
(640×480), it would already require more than 3Gb per frame.
For a frame rate of 30fps, this would imply a 92Gb/s chip data
throughput, which can be put into perspective in relation to
the equivalent RGBZ data stream with the same image format
and bit-depth that would be lower than 400Mb/s. So, even
assuming high-speed chip I/O pads capable of 300Mb/s it
would still require more than 300 pads! Canonical histogram-
based SPAD architectures therefore seem going to a dead-end,
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hence motivating the use of a histogram compression scheme.
The goal of this paper is thus twofold, firstly to demonstrate

the need for pixel-wise SPAD histogram compression at sensor
level and secondly to provide a processing approach involving
multimodal reconstruction with possible Super Resolution.

A. SPAD Imaging Prior Work

1) Recent advances on SPAD imagers: Single photon
avalanche diode (SPAD) has recently emerged as a key
technology in numerous single photon imaging applications.
Contrary to photomultiplier tubes (PMTs) [16] and
microchannel plates (MCPs) [17], [18] that previously were
sensors of choice in single photon detectors, SPAD-based
imagers have the great advantage to enable embedded digital
processing thanks to the use of a standard CMOS process.
The last two years of SPAD development took advantage
of several hardware components upgrades, enabling sensors
power consumption reduction and spatio-temporal resolution
improvements [13], [19]. In particular, we can identify two
recent outstanding SPAD developments. Firstly, [7] finally
succeeded to present the world’s first MegaPixel SPAD sensor,
in spite of numerous hardware-related design constraints.
Secondly, the high-end device proposed by [9] is composed of
a 256 × 256 SPAD CMOS sensor integrated into 3D-stacked
90nm with a reconfigurable operating mode allowing variable
trade-off between spatial and timing resolutions (i.e., spatial
resolution of 64 × 64 to 256 × 256 and timing resolution of
560ns to 0.56ns). Future works will undoubtedly have the
same tendencies by aiming at increasingly targeting higher
spatial and temporal resolutions, implemented in even smaller
device units and dedicated to high volume of industrial
applications (e.g., automotive and Internet-of-Things sectors).

2) Unconventional sensing strategies: Besides
technological trends, we review in the literature various
unconventional system design to overcome SPAD limitation
such as pixel-wise memory needs, sensor data throughput or
even noise photon detection filtering.
For example, [15] attempts to optimize generated SPAD
data, by proposing two methods which consist in dividing
the histogram construction into subparts to overcome the
previously mentioned hardware limitations. Unfortunately,
although reducing hardware constraints, these methods
decrease the sensor acquisition performances in a way.
Likewise, [20] replaces the TDC-per-SPAD scheme with
a shared TDC architecture. It thus allows to optimize the
use of pixel area despite of inducing a lower spatial resolution.

As previously mentioned, SPAD imaging is subject to
high photon noise, modeled by Poisson process, due to the
photons coming from background light. To prevent this, [21]
implements photon coincidence detection in order to perform
noise-filtering. Shared counters across pixel subgroups
yet cause spatial resolution reduction due to the complex
embedded processing that they require [9]. Another way to
attenuate noise distortion, presented in [22], is to misalign
SPAD listening windows with various shifts in order to spread

out the noise effect and mitigate the pile up effect [23]. This
method implies a possible binary code reduction of histogram
bins and thus lower pixel memory needs. Nevertheless, it may
be only applied to specific SPAD operating systems at one
photon per pulse detection. Finally, [24] proposed to shorter
time sensitive windows via time-gating. In spite of noticeable
benefits (e.g., noise filtering, minimizing storage/readout
data), a clear limitation of this is related to the need for either
a proper prior selection of this sensitive period or an increase
of the overall amount of collected data.

Apart from sensor-centric acquisition scheme variants,
single pixel camera [25] approach has already been
investigated in the context of SPAD pixels. Thanks to CS
theoretical results on l1 regularization-based reconstruction
and matrix mutual coherence, this approach does not require
any additional sensors to reconstruct depth maps from a
single photosensitive component. For example, [26]–[29]
achieve high spatial resolution by using a Spatial Light
Modulator (Digital Micro-mirror Device, DMD) placed in
front of a single photon counting detector or SPAD array to
perform CS projections in the optical domain. Unfortunately,
in practice, in addition to involving the use of a bulky DMD,
this kind of system implies unacceptable drawbacks related
to its calibration setup and proper optical alignments.

3) SPAD data processing: Besides to filtering and op-
timizing measurements system for SPAD data generation,
processing approaches are essential for features extraction
with high accuracy. Indeed, even though peak detection is
the most commonly used approach to get depth information
[30], statistical based inference have been proposed to improve
performances (e.g., Gaussian fit methods [31]).

Furthermore, extensions of statistical inference have been
developed in order to extract more features or even to reduce
data throughput. In fact, SPAD sensors provide multimodal
information, where the amplitude of the histogram is related
to the reflectivity of the scene, and depth estimation is
related to a peak position. This way, [32]–[36] developed
reconstruction methods to estimate depth and reflectivity
from SPAD raw data using a maximum likelihood approach
in low and high flux imaging. More recently, [37] proposed
a histograms compression framework via sketching, using
compressive learning [38].

On the other hand, deep learning considered as a data-driven
method used to infer features from observations, meets all
the requirements for processing SPAD data. Therefore, many
deep learning models emerged to estimate intensity-depth
maps [39], [40]. Indeed, data processing methods will most
likely play an important role in overcoming aforementioned
SPAD hardware limitations (i.e., data throughput, data storage,
photon detection efficiency). For example, such a processing
method would involve estimating a high-resolution image from
a single or multiple low-resolution images, thereby relaxing
hardware constraints. This processing task is referred as Super
Resolution (SR) reconstruction (see [41] for an overview of
deep learning techniques related to SR). Focusing on depth
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map SR, the most common approach is image-guided depth
up-sampling [42]–[45] which consists in reconstructing a high
resolution depth map from a full-scale RGB frame combined
with its corresponding low resolution depth map.

B. Main contributions

1) Compression: This paper first presents a novel pixel-
wise compressive sensing (CS) approach which appears to
be efficient in various SPAD operating modes, in single
photon per pulse detection as well as in multiple photon
detection per pulse regardless of Poisson noise level. Thanks
to a custom hardware implementation, this method would
allow to reduce the data memory needs without major loss
of reconstruction accuracy. To support this, we constructed
a ”pseudo-realistic” SPAD simulation model to demonstrate
that SPAD performances can still be maintained (i.e., frame
rate, dynamics range,...). Applying this compression at a CR
of 20% still enables a PSNR of the depth reconstruction of
at least 40dB in all BI conditions.

2) Reconstruction: We exploit all modalities provided
by a SPAD sensor measurements (i.e., intensity and depth),
to improve features reconstruction performance. To do so,
we use a multimodal Deep Generative Model architecture
to capture correlations across modalities in order to jointly
enhance intensity-depth map reconstructions (e.g., depth
discontinuities and edges of the object in intensity maps).
In addition, this reconstruction approach is straightforwardly
compatible with intensity-depth maps SR when considering
each ToF histogram acquired by a pixel as being generated
by a subgroup of virtual pixels.

C. Outline

The remainder of this paper is organized as follows. We
first present a physical model to simulate a SPAD operating
system in ”Real World” conditions by generating relevant
photon times of arrival depending on physical quantities (i.e.,
background illumination level, object albedo and depth). In
the second part, we address the SPAD sensor data-deluge
issues (e.g., pixel memory footprint, chip I/O data throughput)
by taking advantage of a pixelwise histogram dimensionality
reduction through a randomly generated projection matrix (as
CS [46] would do) and combine it with a Deep Generative
Model (DGM) [47] to reconstruct the depth map. In the
third part, the acquisition/reconstruction problem is revisited
in order to further exhibit the relevance of a multimodal
reconstruction, also enabling Super Resolution.

II. SPAD IMAGING - SYSTEM MODEL

In the context of active reflection imaging (see Fig. 1), the
D-ToF method consists in measuring the propagation time of a
light pulse, emitted by the transceiver (i.e., LASER), and then
received by a synchronized receiver (i.e., SPAD). Thanks to
a high frequency Time-to-Digital Converter, the single photon

detection sensor sequentially records every photon arrival time.
This data is then collected through a per-pixel histogram,
where the number of photon arrivals over each measured
time interval is accumulated in the corresponding bin of the
histogram, h, as depicted in Fig. 1.

Fig. 1: SPAD Operation System Overview: direct time-of-
flight measurement (D-ToF) of a light pulse reflected by a
target using a time-correlated single photon counting (TCSPC)
system.

This section presents an active 3D imaging model (inspired
by [21]) to generate synthetic SPAD raw data by taking
into account both the physical phenomena related to the
environment as well as the hardware characteristics of the
transceiver and the receiver. This model will later be used
to evaluate our acquisition/reconstruction methods.

A. Active D-ToF imaging model
To generate more realistic SPAD data, we developed an

end-to-end physical simulation model except that it focuses
only on direct and not global illumination (i.e., due to inter-
reflections between objects of the scene) because of its second-
order impact. The direct illumination of the scene towards the
sensor is thus from the reflection of two light sources, which
are a laser source (with power Ps [W]), and an ambient light
source (with intensity Pa [W/m2]). For the sake of physical
simulation relevance, several configurations will be taken into
account, regarding the hypothesis of ambient light intensity,
Pa. For an indoor scene, ambient light illumination is of the
order of 5 to 35klux (Pa < 350W/m2) and between 50 -
100klux (Pa < 1050W/m2) for an outdoor scene. Besides,
we denote PAS the solar radiation integrated over the laser-
illuminated surface (cf. [21]),

PAS = Pa ·As = Pa · 4d2 · tan
(
θH
2

)
· tan

(
θV
2

)
, (1)

where d is the distance to the object and θV , θH are the
aperture angles of the laser. We assume that the illumination
of the scene by the laser is uniform due to the invariance of the
electric field in the orthogonal plane to the direction of wave
propagation. Therefore the pixel-wise light power related to
the laser pulse reflection is estimated (cf. [21]) by,

P ∗
s = Ps · τr ·

2

π

(
Dlens

2d

)2

· τo · δbw
FF ·PDP

H · W
. (2)

And the pixel-wise light power due to ambient light (cf. [21]),

P ∗
a = PAS · τr ·

2

π

(
Dlens

2d

)2

· τo · δbw
FF ·PDP

H · W
. (3)
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Dlens and τo are the optical parameters determining the
diameter of the lens and the efficiency of the optical system.
The integral of the light power considering the efficiency of
the bandpass filter along all wavelengths is approximated by
a single coefficient noted δbw (where the BI power density is
considered uniform over the scene). Note that the pulse laser
power reflected to the SPAD is subject to the inverse square
law (i.e., inversely proportional to the square of the flight
distance) whereas BI is independent to the object distance d
(due to the simplification of d while expanding PAS in Eq.
3). A pixel Fill Factor (FF ), a pixel array size (H×W) and a
probability of photon detection (PDP ) need to be defined too,
as described in [48]. Despite the invariance of the scattering
intensity related to the solid angle of the reflecting object
(specular reflectance [49] is not considered), the reflectance
intensity level of each object of the scene may still vary as
illustrated by different shades of gray in the Fig. 1. For the
sake of simulation purposes – which is not strictly following
laws of physics – the albedo τr (for the considered spectral
band) is modeled as the luminance component, Y, of its related
RGB image. From those light powers, P ∗ (P ∗s , P ∗a ), photon
rates, R (Rs, Ra) are estimated,

R =
λP ∗

hc
, (4)

where the Planck constant h allows to relate the energy of a
photon to its frequency f = c

λ .

B. SPAD histogram generation process

For each of these pixel-wise photon flux, inter-photon wait-
ing times {x[i]}i∈N respect the memoryless property, i.e., the
waiting time between two successive photons is exponentially
distributed and independant to an arbitrary starting time ω ≥ 0
as stated in [50],

P(X > ω + x|X > ω) = P(X > x), (5)

P(X > x) = exp(−Rx). (6)

In order to further simulate SPAD measurements, we first
aim at generating synthetic random inter-photon arrival time
samples {x[i]}i∈N. To this end, we thus performed a Monte
Carlo sampling strategy using an exponential random number
generator with a rate parameter equals to the photon flux R.

Then, lets denote {t[i]}i∈N the theoretical photon arrival
time sequences indexed i for a unique light source,

t[i] = t[i− 1] + x[i]. (7)

{tfa [i]}i∈N, {tfs [i]}i∈N and {tfdcr[i]}i∈N are respectively
representing the sequences of arrival times of the three main
contributors: BI, laser signal and dark count rate (DCR) at
inter-frame f .

Note that one specificity of SPADs is that they are reverse-
biased at a higher voltage than the breakdown voltage (i.e.,
Geiger Mode [51]), thus a single charge carrier can trigger a
self-sustaining avalanche. This operating mode implies a said

”Dead Time” (DT) [10], that corresponds to the SPAD quench-
ing time to be raised again above breakdown voltage to detect
another photon. Measured SPAD photon arrival times se-
quences {tSPAD[i]}i∈N regardless inter-frame f , thus cannot
be the straightforward concatenation of the three sequences.
This is performed by an iterative process sequentially retaining
the first arrival time and then removing photons arrival times
from the three sequences that are below tSPAD[i] + Dt (see
Alg. 1), where Dt refers to the dead time value. Every arrival
times in all inter-frame (the number of inter-frames is equal to
the ratio between the sensor frame rate and the laser repetition
rate, b fpsFe c) are consequently at least one DT apart.

Algorithm 1: Generation of synthetic SPAD mea-
surements from simulated sequences of photon time
arrivals, for three independent light sources

1 for f = 1 : b fpsFe c do
2 while min(tfa , t

f
s , t

f
dcr) <

1
Fe do

3 tSPAD[i]← min(tfa , t
f
s , t

f
dcr)

4 tfa ← tfa \ {∀j, tfa [j] ≤ tSPAD[i] +Dt}
5 tfs ← tfs \ {∀j, tfs [j] ≤ tSPAD[i] +Dt}
6 tfdcr ← tfdcr \ {∀j, t

f
dcr[j] ≤ tSPAD[i] +Dt}

7 i+ +
8 end
9 end

10 h← hist(tSPAD)

Besides, other sensor defaults such as afterpulsing [52],
or crosstalk [53] are not considered because of their small
influence. Fig. 2 illustrates simulated SPAD histograms, h, of
tSPAD under typical scene conditions.

(a) Pa = 50W/m2 BI.

(b) Pa = 1050W/m2 BI.

Fig. 2: Several examples of per pixel Time-of-Flight his-
tograms corrupted by a low BI (a) and a high BI (b), for
three different object distances (5m, 15m and 20m). The laser
Pulse Width is of 5ns while the bin width is of 260ps and the
SPAD DT equals to 27ns.

Contrary to the SPAD model depicted in [39], it therefore
provides more complex data without neglecting DT that in-
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duces histogram distortions (e.g., pile-up effect and rebounds
as illustrated in Fig. 2). This model also takes into account
photon efficiency variation from objects albedo which will
allow us to demonstrate the use of a multimodal DGM from
compressed histograms. Our generated histograms typically
well correlate with the ones reported in the white paper [54],
especially for a configuration with a wide laser pulse width
and a high BI. Note that, as shown in Fig. 3 that describes
our main contributions, the rest of this article will rely on this
histogram modeling to derive data-driven based approaches,
used for constructing both training and testing databases.

Fig. 3: Schematic description of our proposed SPAD simula-
tion model and the contributions of this paper.

III. DEPTH FROM COMPRESSED TOF HISTOGRAMS

A. Histogram compressive sensing

To jointly address the aforementioned Hardware implemen-
tation issues, we introduce a pixel-wise histogram compres-
sion. Compared to previous works [55], [56], the proposed
compression scheme is inspired from CS [57], which only
consists of performing a set of pseudo-random projections
of h. Under the light of recent CS-imager works in various
field such as, low power [58], high frame rate [59], embedded
inference [60], if properly designed, this proposed approach
seems compatible with a future on-line, in-pixel implemen-
tation without the need for bulky and complex embedded
processing. Generally speaking, it has been proven that CS
can efficiently sense sparse signals s ∈ RN [61], [62] thanks
to a sensing matrix Φ ∈ RM×N, this without major loss of
information while providing a number of samples far below the
original signal dimensionality (i.e., M << N). CS theoretical
foundations are then twofold, first it assumes that the sensing
matrix is said incoherent with the sparsity representation basis
[57], it then supposes that the signal is sufficiently sparse with
respect to the targeted Compression Ratio (CR=M/N) [63].
Furthermore, in the name of a universal sensing strategy, it has
been demonstrated that a pseudo-randomly generated Φ [64]
enables a sufficient incoherence with any sparse representation
basis. Then, although conventional CS assumes signal sparsity
(i.e., there exists a representation basis in which the signal
exhibits very few non-zero coefficients), in practice the noisy
case generalization is rather considered where the signal is

said ”compressible” [65] (i.e., most of the coefficient modules
are below a certain low threshold).

However, there exists no simple sparse representation of h,
at least at first glance (cf. Fig. 2). We can yet mention that
in the specific case of [66], CS principles are extended to
deal with the acquisition of a signal following a mixture of
distributions model and not a sparsity-based model. Moreover,
recent advances on CS reconstructions now show the interest
of using Deep Generative Models to infer signals from their
CS measurements [67] instead of finding the best sparse
solutions using an iterative regularization-based algorithm
[68]. In addition to providing a better signal rendering [69],
this reconstruction strategy have two other main advantages
compared to a conventional one. Firstly, it no more requires to
define a specific sparse representation by hand [70]. Secondly,
it enables the use of more complex, non-linear acquisition
schemes [71]. Indeed, thanks to a proper DGM topology
design and training, the algorithm would be capable of finding
the best non-linear mapping between collected data (i.e., in a
latent space) and its restoration [47], [72].

In our specific case, this work aims at taking advantage
of those recent advances on CS applied to SPAD histogram
compression, with a limited degradation of the accuracy in
terms of depth estimation. Mathematically speaking, for the
sake of formalism, let’s denote Ψ a generative function that
takes as input a limited set of parameters γ ∈ RΓ (Γ = 3:
depth, albedo and background illumination) to provide a pixel-
wise ToF histogram (h = Ψ(γ)) being almost equivalent to a
mixture of distributions [73] with a limited set of parameters.
Hence, we can state that the histogram has an intrinsic
latent representation γ while being corrupted by noise due
its stochastic nature. Ψ thus represents the simulation model
operator described in section II. Inferring γ from h could
thus be tackled by a deep learning strategy since the network
topology is capable of approximating this inverse mapping
Ψ−1 and trainable to perform this specific task. Actually, this
kind of deep learning approach has already drawn attention
from the SPAD scientific community [39], [40]. Because, Γ is
small compared to the dimensionality of a N-bin histogram h,
we can reasonably expect that h is of a compressible nature.
We therefore propose to use a universal sensing strategy to
capture most of the information with the smallest number of
measurements, hence providing the so called ”measurement
vector” y ∈ RM:

y = ΦΨ(γ) = Φh. (8)

Furthermore, regarding in-pixel hardware implementation, be-
cause it is unwanted to store all coefficients of Φ on-chip
as it would be necessary if Φ was considered as an encoder
in an autoencoder framework; Φ needs to be generated from
an embedded pseudo-random (but deterministic) process, for
instance following a Rademacher distribution as in [65]. Note
that such a binary distribution can be efficiently generated
either by a Linear Feedback Shift Register (LFSR) [74] or
by a cellular automaton with chaotic behaviour [75], [76].
Such a system could be efficiently implemented by replacing
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the standard one-hot encoding combined with unsigned N
counters by sequentially generated rows of Φ combined with
signed M counters. Managing y instead of h at pixel level will
thus highly relaxes hardware constraints. All the remainder of
this paper deals with this kind of CS-SPAD data (i.e., using
the same ±1 Rademacher sensing matrix with zero-mean Φ,
for all pixel-wise CS measurements).

B. Compressive sensing deep generative model

In the context of single photon detection, depth reconstruc-
tion from a photon count histogram aims at operating under
a high ambient illumination conditions. For instance, [32],
[77] attempts to estimate depth with a customized maximum
likelihood method. On the other hand, [22] proposed an
asynchronous detection scheme in order to compensate for the
pile-up effect using a log-match filter to make noise uniform
and to easily estimate depth from peak detection. Finally, [39]
introduce deep learning approaches to single photon detection
imaging for depth estimation. Consistently with these recent
works, our depth reconstruction made from SPAD-CS data y
instead of the histogram h itself is also based on a specific
deep learning topology as illustrated in Fig. 4.

Fig. 4: Deep Generative Model topology for pixel-wise depth
reconstruction. Note that the only difference between recon-
struction from histogram inputs and from CS is the first Fully
Connected (FC) layer. Concat-H corresponds to horizontal
concatenation and MP corresponds to Max Pooling.

This topology is designed to reconstruct a single depth mea-
surement per pixel, corresponding to its related CS measure-
ment vector y. Apart from being relevant to decompress CS
data (i.e., somehow inverting Φ), this unique DGM topology
allows for a fair comparison between reconstructions made
from histogram data (H-DGM) and compressed histograms
(CS-DGM). This said pixel-wise CS-DGM embeds a Fully
Connected (FC) layer to map the input to the histogram
dimensionality. This FC also intrinsically performs a bin
weighting to feed the L∞ normalization, making the topology
more robust against the high histogram scaling variability due
to pixel-to-pixel variable reflectivities τr. Local bin filtering
layers then enable to compensate the residual pile-up effect
and facilitate the detection of specific waveforms (e.g., shaped
laser pulses). Multiscale filtering allows to enforce local bin
collaborations to efficiently perform denoising operations. The

Parameters
Max range 25m

Repetition rate, Fe 12MHz
Wavelength, λ 780nm

Background light, Pa 50 - 1 050 W/m2

Dead Time, Dt 27 ns
Object reflectivity, τr 1/256 - 1

Pulse Width, PW 5ns
Mean illumination power, Ps 12 mW

Field of View, (θH -θV ) 30◦- 40◦

Diameter of collecting lens, Dlens 11mm
f-number 1,4

Focal length 15mm
Optical filter bandwidth, δbw 20nm

Optic efficiency, τo 0,7
Photon Detection Probability, PDP 0,4

Pixel Fill Factor, FF 0,7
TDC dynamic range, N 1-320

TDC Resolution, (N× Fe)−1 260ps (78mm)

TABLE I: This table reports all simulation parameters used
for subsections III and IV.

goal of the last layer is in a way equivalent to a peak position
detector as a Softargmax would be [78]. Indeed, we noticed
that a Softmax followed by a learned FC performs at least
at par, because of enabling more degrees of freedom during
the learning stage while not implying unwanted overfitting.
Finally, concatenating the ReLU output with Softmax fur-
ther improves the reconstruction letting the final projection
efficiently combine position and amplitude information. Note
that FC, convolutional (Conv) and transpose convolutional
(ConvT) layers are all followed by the rectified linear unit
(ReLU) activation functions. In order to argue for future
hardware optimized implementations, this subsection aims at
demonstrating the efficiency of only-depth inference from
SPAD-based compressed histograms in comparison with depth
reconstruction from its uncompressed counterpart. We there-
fore evaluate our proposed acquisition scheme, with predefined
parameters of the simulation model (section II) according
to the ones reported in [21], [48] (cf. table I). Note that
most of the techniques for accurate depth measurements only
consist in histogram peak detection, this unfortunately led
to the use of laser with a very short pulse duration and
high illumination power (e.g., 100ps of pulse duration [9]).
Fortunately, our approach relies on the waveform detection
instead, implying that such high performance laser is not
required. This way, laser illumination pulse duration has been
set to a few nanoseconds instead of hundreds of picoseconds
[79]. Receiver parameters (e.g., imaging range and resolutions)
are thus determined according to the typical performance of
a SPAD sensor [9]. Whereas environment parameters such as
background light intensity are estimated through SPAD data
simulation works [21], [32], [48].

C. Pixel wise depth estimation

Since the above reconstruction model, illustrated in Fig. 4,
is a pixel-wise method; the use of a realistic dataset with
spatial correlation between pixels to validate our approach,
is not required. Besides, we generate an unrealistic RGB-D
train dataset with a random uniform generator, in order to get
a higher variability of depth-luminance combination and cover
all the measurement dynamic. Knowing that the reconstruction
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(a) H-DGM (b) CR 10%

(c) CR 5% (d) CR 2.5%

Fig. 5: RMSE simulation results for 3D imaging at various
Compression Ratio with a scale indicator of the resolution
and an indicator of the simulated TDC resolution (78mm).

method is pixel-wise, Signal-to-Background Ratio (SBR) thus
only depends on the BI. Indeed the SBR variation results from
the linear product of the object albedo, τ and the BI, Ps, as
seen in Eq. 3 and in Eq. 2. We thus estimate the depth Root
Mean Square Error (RMSE) according to BI for various CR
acquisition methods. Results reported in Fig. 5 were obtained
by simulating multiple BI, Ps, over uniformly distributed ToF
values, d (i.e., 48 × 64 depth measurements). Each pixel of
this RMSE map corresponds to the average error of an image
reconstruction of 48× 64 pixels with the depth value and BI
value associated with it. Note that pixels coordinates of the
50× 50 RMSE map correspond to the ground-truth depth and
a certain BI level, where the x-axis step is of 0.4 m and the
y-axis step is of 21 W/m2. No matter what method is used
(e.g., H-DGM method or the compressive sensing methods),
we can observe that pixel-wise noise appears for long distance
objects in case of low SBR (cf. Fig. 5, RMSE increases while
increasing depth and BI). Fig. 5 shows how the performance of
compression-reconstruction methods are affected by changing
the depth measurements and the background illumination (BI)
compared to the uncompressed counterpart. Furthermore, since
the RMSE for some BI/Distance configurations is far below
the simulated TDC resolution (78mm), this proposed CS
acquisition system would even allow for a higher temporal
resolution, without the expense of additional memory (i.e., CS
measurement vector y size is not correlated to the temporal
resolution). In other words, our CS acquisition system could
benefit from higher TDC clock frequency without any other
hardware constraints.

IV. DEEP DIGGING INTO LATENT CS-SPAD DATA

A. Two-part multimodal DGM

In this subsection, we propose to build a Deep Generative
Model being trained to disambiguate multiple modalities (lu-
minance τr and depth d) from a latent space in the name
of compressed SPAD histograms y while being as least as

Fig. 6: Deep Generative Model topology for depth-luminance
reconstruction from compressed histograms.

possible sensitive to BI. Our multimodal reconstruction algo-
rithm directly takes advantage of the deep learning framework
presented in the previous section. As mentioned in section
III, our SPAD data model mainly takes into account the most
relevant physical characteristics denoted d and τr. The DGM
topology presented in Fig. 6 therefore aims at jointly inferring
d and τr from y, for all pixels simultaneously. The Depth part
of this topology (i.e., upper parts of Fig. 6) slightly differs
from the one reported in Fig. 4 by including a local spatial
collaboration during the multiscale filtering stage while using
σP = 3 and P = 2 (σS = 1, S = 1) removing the strict pixel-
wise characteristic of the system. For the luminance part (i.e.,
down parts of Fig. 6), the L∞ normalization is performed
on the whole layer instead of being pixel-wise, in order to
compensate for the average intensity (i.e., frame-based) of
the data, making the reconstruction more robust against BI
changes. In addition, this luminance part also takes as input the
denoised version of the histogram coming from the last part
of the Depth DGM. The residual connection between depth
part output and y input advantageously enables the inference
of τr even in case of a small BI compensating the drawback
of the direct inference that would be only performed using y
as input (which is highly efficient in case of a high BI).

B. Extension to Super-Resolution reconstructions

Several works have been conducted on the use of SR
approaches in the SPAD context. For example, [80] combines
data acquisitions from the SPAD sensor with data from a
standard CMOS camera to improve the spatial resolution of
the SPAD sensor. As proposed for multimodal reconstruction
from SPAD data (i.e., without any additional sensor), it is
relevant, in our case, to take advantage of the intrinsic nature
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Fig. 7: Examples of ToF histogram in super resolution. The
first and second histograms refer to the same objects mea-
surements (i.e., 5, 8, 10, 15 m) but with more BI for the
second image. The third plot is the ToF histogram of 5, 5, 10,
10m depth object measurements.

of the SPAD data to also perform SR at the reconstruction
stage namely because SPAD imaging systems suffer from poor
spatial resolution. Therefore, we decided emulate each pixel
as a virtual group of pixels, thus leading to the acquisition
of shared histograms. It would theoretically enable to perform
a finer mutual information retrieval compared to what would
happened in case of a simple averaging, this with more realistic
synthetic data. However, it implies histogram peaks masking
(i.e., short range pixels are ”shadowing” long range ones at
same albedo) which makes the reconstruction more complex
in practice. Fig. 7 illustrates simulated histograms where 2×2
neighbor pixels do not share same input d (with uniform
τr). Thanks to our DGM topology preserving the overall
description, to extend the DGM to SR we just added an
upsampling stage using σS = 2 and a stride S = 2, as
described in Fig. 6. Note that even if this SR reconstruction is
not the main contribution of this paper, we still demonstrate
that our proposed framework is compatible with any standard
deep learning SR techniques. To improve future SR results, we
can employ known deep learning based SR models surveyed
in the state of the art such as image guided depth upsampling
method and pixel-shuffle [81].

C. Experimental results

Multimodal and Super-Resolution reconstructions with
NYU V2 dataset [82] as training dataset, and Middlebury
dataset [83] as testing dataset are presented in Fig. 8
and in Fig. 11, 12. Because Deep Learning algorithm
performances rely on the training dataset; we therefore apply
data augmentation on the training and test dataset in order
to limit overfitting issues. It allows us to train a model
with NYU V2 dataset that would better generalize to the
Middlebury test dataset. Indeed, in order to properly provide
a powerful evaluation of the 12 test scenes of Middlebury
reconstructions under seven different BIs (see table depicted
in Fig. 10), we will take care of a relevant data augmentation.
To that end, we generate three samples of every NYU V2
dataset images (i.e., 1 449 × 3 RGB-D images) with different
BIs randomly drawn from 50 to 1 050 W/m2.

As depicted in Fig. 9, two main data preprocessing stages
are performed on the original training and test datasets, first
related to the depth range distribution and second to the
depth quantization. In order to fix the depth range distribution

misalignement, we apply a generalized data augmentation,
which consists in applying depth values transformation to
improve measurement frequency correlation between training
and test datasets over all the measurements dynamic range.
Then, as depicted in Fig. 9, NYU V2 depth information is
quantized in a log fashion with a limited number of bits.
Therefore, a log-scaled uniform quantization noise has been
added in order to avoid any unrealistic physical behavior that
could limit the DGM training and testing performances by
introducing reconstruction artifacts. Same correction has been
applied to the Middlebury dataset but with uniform noise
ranging below the quantization step. Note that Middlebury
images also contains depth holes (cf. Fig. 9), we thus applied
a median-diffusion algorithm [84] to fill these depth holes
[85]. Since the training and test datasets must have the
same scale scene, normalized depths of the training and
test datasets are scaled similarly (cf., Table I) leading to a
quantization step of 78mm, in order to be consistent with the
simulated TDC resolution.

Finally, every images are subsampled (with border removal)
to 48x64 for low resolution (LR) reconstruction, or to 96x128
for super resolution (SR) reconstruction. Models of this paper
are trained using TensorFlow2 backend with a batch size of 5
frames (3 subsection IV-B) and with an amount of 40 epochs
using a specific learning scheduler (lr initialized to 0.001 then
rescaled each epoch by a factor of 0.85 after the first 20
epochs). Learning stages are performed thanks to an adaptive
moment optimization algorithm (Adam [86]) using an output
frame-based Mean Squared Error (MSE) loss function. Note
that, our simulation model (i.e., pseudo realistic simulation
taking into account DT, albedo non-uniformity and non-narrow
laser time pulses) as well as our data preprocessing (i.e.,
CS) unfortunately does not allow for a fair and quantitative
comparison with previous works of [39], [40], [42] that do
not consider those considerable effects.

With a second MSE loss function applied on the luminance
part, we obtained the average reconstruction PSNR curves re-
ported in Fig. 10. Compared to the results for pixel-wise depth-
only reconstruction (cf. Fig. 5) this multimodal collaborative
reconstruction enables to further improve BI robustness, in-
creasing the accuracy for depth estimation (cf. Fig. 10) mostly
for outdoor conditions even if implying a small degradation
for a low Pa. On the other hand, luminance reconstruction is
optimally performed in case of indoor conditions with the light
on, because both light sources (laser and BI) both participate
in estimating τr.

Fig. 11, 12 shows examples of multimodal 2 × 2 SR
providing 96×128 depth map and luminance images with finer
spatial details from a 48 × 64 CS ToF histograms (M = 64).
Reconstruction artifacts are visible (holes in circles Fig. 11 row
1 and ears details row 6) and are likely due to a combination of
compression losses and background noise while long distance
pixel-level details at low-resolution scale might be masked
by foreground objects (with far higher contribution to low-
resolved histograms).
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(a) GT (b) CR 20%-350W/m2 (c) CR 20%-1050W/m2 (d) CR 2.5%-350W/m2 (e) CR 2.5%-1050W/m2

Fig. 8: Depth-Luminance reconstructions from various CS inputs (i.e., a CR of 2.5% for the fourth and fifth image columns,
a CR of 20% for the second and third image columns) under highly enlighted indoor conditions (i.e., BI of Pa = 350W/m2

for the second and forth image columns. BI of Pa = 1050W/m2 for the third and fifth image columns). First image columns
are Ground truth images. Image reconstructions are issued from the DGM of Fig. 6.

(a) Depth distributions (b) Intensity distributions

Fig. 9: Depth-Intensity values distribution from images of train
and test datasets (NYU V2 and Middlebury), before and after
data augmentation.

V. CONCLUSION

SPAD sensor hardware characteristics are mainly limited
due to the overall amount of generated data that are related
to the need of managing ToF pixel-wise histograms. To tackle
most of those intrinsic limitations an ”in-pixel” ToF histogram
CS has been proposed to facilitate future SPAD designs. This
paper demonstrates that this in-pixel histogram compression
can be combined with a super-resolved multimodal reconstruc-
tion thanks to a dedicated DGM. To make the reconstruction as
robust as possible against background illumination variations

(a) Depth PSNR (b) Intensity PSNR

Fig. 10: Average depth-intensity reconstructions PSNR (over
12 images from Middlebury dataset), for intensity and depth
estimation accuracy for a range of CR and three different Pa
in W/m2) (i.e., indoor light-off BI (100, red curve), indoor
light-on BI (350, green curve), outdoor BI (1 050, blue curve)).
Horizontal dotted lines are for Histogram based reconstruction
(i.e., without compression, M = 320). Horizontal dashed lines
are for another uncompressed reconstruction baseline (M =
320) based on a log-match-filter combined with a peak detector
(i.e., a learned bin-wise weighting followed by a basic peak
position detector as Softargmax enabling to compensate the
inherent pile-up effect).



10

PSNR=28.25 dB PSNR=27.37 dB

PSNR=37.07 dB PSNR=34.71 dB

PSNR=37.77 dB PSNR=37.36 dB

PSNR=34.54 dB PSNR=33.58 dB

PSNR=38.86 dB PSNR=38.20 dB

High Resolution
(a) GT 96× 128

Low Resolution
(b) GT 48× 64

PSNR=29.68 dB
(c) CR=20.0% (2× 2 SR, M = 64)

PSNR=28.06 dB
(d) CR=5.0% (2× 2 SR, M = 16)

Fig. 11: Depth SR reconstructions from CS inputs under highly enlighted indoor conditions (Pa = 350W/m2). First and
second image columns are respectively groundtruth low resolved and high resolved images for depth map. While third and
fourth ones are 2 × 2 SR reconstructions issued from the DGM of Fig. 6 at a CR of 20.0% (2 × 2 SR, M = 64) and 5.0%
(2× 2 SR, M = 16). Note that the reported PSNR are computed from the High Reolution groundtruth images.
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PSNR=23.98 dB PSNR=24.27 dB

PSNR=22.30 dB PSNR=23.18 dB

PSNR=24.35 dB PSNR=23.87 dB

PSNR=22.45 dB PSNR=19.49 dB

PSNR=27.31 dB PSNR=27.82 dB

High Resolution
(a) GT 96× 128

Low Resolution
(b) GT 48× 64

PSNR=23.17 dB
(c) CR=20.0% (2× 2 SR, M = 64)

PSNR=21.15 dB
(d) CR=5.0% (2× 2 SR, M = 16)

Fig. 12: Intensity SR reconstructions from CS inputs under highly enlighted indoor conditions (Pa = 350W/m2). First and
second image columns are respectively groundtruth low resolved and high resolved images for intensity map. While third and
fourth ones are 2 × 2 SR reconstructions issued from the DGM of Fig. 6 at a CR of 20.0% (2 × 2 SR, M = 64) and 5.0%
(2× 2 SR, M = 16). Note that the reported PSNR are computed from the High Reolution groundtruth images.
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a pixel-wise/layer-wise L∞ normalization layer is involved
in the topology. Implementing depth-luminance DGM inter-
connections with multiple activation functions also enables a
considerable improvement in reconstruction accuracy as well
as making the reconstruction less sensitive to background il-
lumination changes. Numerical results for multimodal sensing
show that even for a compression using 32 CS measurements,
the proposed topology enables an average PSNR depth recon-
struction loss of only 7dB while its luminance counterpart
is of less than 3dB, this for any background illumination
levels (up to 1 050 W/m2). In addition, even though being
preliminary results, we demonstrated that disambiguating local
ToF information collected by SPAD pixels now paves the
way for even higher resolved images from D-ToF type of
sensors. Future works to improve SR reconstructions will
consist in including pixel-shuffle [81] with deactivable skip
connections [87]. Finally, the proposed acquisition scheme
may also provide input data for direct inference targeting
semantic applications (e.g., gesture recognition, object detec-
tion), potentially for ToF-based smart sensors.
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