A homomorphic AES evaluation in less than 30 seconds by means of TFHE
Résumé
Since the pioneering work of Gentry, Halevi, and Smart in 2012, the state of the art on transciphering has moved away from work on AES to focus on new symmetric algorithms that are better suited for a homomorphic execution. Yet, with recent advances in homomorphic cryptosystems, the question arises as to where we stand today. Especially since AES execution is the application that may be chosen by NIST in the FHE part of its future call for threshold encryption. In this paper, we propose an AES implementation using TFHE programmable bootstrapping which runs in less than a minute on an average laptop. We detail the transformations carried out on the original AES code as well as the optimized FHE operators we developed to lead to a more efficient homomorphic evaluation. We also duly give several execution times on different machines, depending on the type of execution (sequential or parallelized). These times vary from 4.5 minutes (resp. 54 secs) for sequential (resp. parallel) execution on a standard laptop down to 28 seconds for a parallelized execution over 16 threads on a multi-core workstation.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |