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ABSTRACT
Since the pioneering work of Gentry, Halevi, and Smart in 2012
[18], the state of the art on transciphering has moved away from
work on AES to focus on new symmetric algorithms that are better
suited for a homomorphic execution. Yet, with recent advances in
homomorphic cryptosystems, the question arises as to where we
stand today. Especially since AES execution is the application that
may be chosen by NIST in the FHE part of its future call for thresh-
old encryption. In this paper, we propose an AES implementation
using TFHE programmable bootstrapping, which runs in less than a
minute on an average laptop. We detail the transformations carried
out on the original AES code as well as the optimized FHE operators
we developed to lead to a more efficient homomorphic evaluation.
We also duly give several execution times on different machines, de-
pending on the type of execution (sequential or parallelized). These
times vary from 4.5 minutes (resp. 54 secs) for sequential (resp.
parallel) execution on a standard laptop down to 28 seconds for a
parallelized execution over 16 threads on a multi-core workstation.

CCS CONCEPTS
• Security and privacy→ Public key (asymmetric) techniques.
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1 INTRODUCTION
With recent advances in FHE, is a homomorphic AES still as im-
practical as it was ten years ago? The work of Gentry, Halevi, and
Smart [18] in 2012 pushed research towards new symmetric cryp-
tosystems designed primarily to be faster to evaluate over FHE.
Indeed, they performed an AES-128 homomorphic evaluation with
BGV using HElib, with now obsolete parameters that did not al-
low bootstrapping. They then obtained an execution time of 4.1
minutes, but without allowing further operations on the final ci-
phertext. With bootstrapping, thus allowing further calculations
after the homomorphic execution of the AES, their runtime grew to
17.5 minutes. So neither of these two approaches could be used in
practice. Since transciphering (the ability to homomorphically turn
low overhead symmetrically encrypted data into homomorphically
encrypted ones) is an important issue for FHE practicality, several
teams then decided to create new symmetric cryptosystems, whose
encryption operations were specifically chosen to be more rapidly
executed in the homomorphic domain. As of today, there are many
proposals, from block ciphers (LowMC [1], PRINCE [6], CHAGHRI
[2]) to stream ciphers (Elisabeth [15], PASTA [17], Kreyvium [8]).
Each comes with its pros and cons. For instance, PRINCE [6] is a
block cipher especially created to be lightweight and, although it
was initially proposed independently of Gentry’s breakthrough on
FHE, has a number of desirable properties with respect to homo-
morphic execution: a moderate number of rounds, small depth (for
a block-cipher) and a low gate count/footprint of the decryption and
encryption functions. PRINCE was one of the first symmetric algo-
rithms for which an FHE execution attempt was done [21]. LowMC
[1], on the other hand, is the first block cipher explicitly designed
with FHE and MPC in mind. Although demonstrating competitive
FHE execution performances at the time of proposal, its design was
intrinsically bit-oriented while the FHE state of the art has moved
away from bit-level FHE operations due to the relative inefficiency
of this latter approach. In 2022 Ashur et al. presented CHAGHRI
[2], an FHE-friendly block cipher enabling efficient transciphering
in BGV-like schemes. A complete CHAGHRI circuit can be imple-
mented using 16 multiplications, 48 Frobenius automorphisms, and
32 rotations. The authors implemented it with HElib in order to
compare it with Gentry et al. work on AES. Although their im-
plementation is claimed to be 63% faster than [18], an attack on
CHAGHRI has recently been proposed [22]. Also introduced in
2022, Elisabeth is a family of stream ciphers especially designed
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to be efficient for Hybrid Homomorphic Encryption (HHE). The
authors use TFHE and propose a Rust implementation (using the
Concrete library) of Elisabeth-4, that is to say, a cryptosystem
in which inputs are on 4 bits. So it would take 32 executions of
the cipher to obtain a 128-bits ciphertext. Before Elisabeth, the
PASTA cryptosystem, implemented with BGV/BFV proposed an
optimized cipher for integer HHE use cases. They also benchmark
several HHE schemes, using the HElib library. But the use of a
non-bootstrapping-able scheme limits the number of operations
to be further performed on the ciphertexts. Kreyvium is a stream
cipher, which is a variant of Trivium [7] (a stream cipher belonging
to the eSTREAM portfolio). The main motivation for introducing
Kreyvium was to propose an FHE-friendly symmetric primitive
with 128-bits of security, based on the sound design rationals of
Trivium. Additionally, the state of the art also includes homomor-
phic evaluation of several variants of the Grain-128 stream cipher
by means of TFHE either in gate-bootstrapping mode or exploiting
its functional bootstrapping capabilities [3, 4]. Often compared to
the homomorphic execution times of AES as a guarantee of effi-
ciency, none of these cryptosystems has been standardized (with
the notable exception of Grain-128, which was a finalist in the
recent NIST competition on lightweight cryptography). Yet, an
“efficient-by-FHE-standards” homomorphic AES execution remains
interesting for the research community working on transciphering,
even if it does not bring any revolution. This is especially so, since
AES execution may be the application chosen by NIST in the FHE
part of its future call for proposals on threshold encryption1.

Contribution– In this paper, we propose an AES implemen-
tation using TFHE programmable bootstrapping, which runs in
less than a minute on a standard laptop PC. We first detail the
modifications carried out on the original AES code as well as the
optimized FHE operators we developed to lead to an efficient ho-
momorphic evaluation of the algorithm. Then we give details about
the benchmark made to determine which decomposition basis to
use to have a faster evaluation of the algorithm. We finally provide
experimental execution times on different machines, depending on
the type of execution (sequential or parallelized).

Paper Ogranization– This paper is organized as follows: Sec-
tion 2 reviews the basics of the TFHE cryptosystem and gives the
necessary details of the tree-based method for bootstrapping with
multi-input ciphertexts and its optimization with multi-value boot-
strapping. Section 3 gives a brief reminder on the AES. Section 4
provides a detailed exposition of our approaches to transform the
original AES code and implement the most optimized and efficient
version of it with TFHE programmable bootstrapping. Section 5
presents the performances and results of our methods.

2 TFHE PRELIMINARIES
2.1 Notations
Let T = R/Z be the real torus, that is to say, the additive group
of real numbers modulo 1 (R mod 1). We will denote by T𝑁 [𝑋 ]𝑛
the set of vectors of size 𝑛 whose coefficients are polynomials of
T [𝑋 ] mod (𝑋𝑁 + 1). 𝑁 is usually a power of 2. Let B = {0, 1}.
⟨ , ⟩ denotes the inner product.

1https://csrc.nist.gov/Projects/threshold-cryptography.

2.2 TFHE Scheme
The TFHE scheme is a fully homomorphic encryption scheme intro-
duced in 2016 in [10] and implemented as the TFHE library 2. TFHE
defines three structures to encrypt plaintexts, which we summarize
below as fresh encryptions of 0:
• TLWE sample: A pair (𝑎, 𝑏) ∈ T𝑛+1, where 𝑎 is uniformly
sampled from T𝑛 and 𝑏 = ⟨𝑎, 𝑠⟩ + 𝑒 . The secret key 𝑠 is uni-
formly sampled fromB𝑛 , and the error 𝑒 ∈ T is sampled from
a Gaussian distribution with mean 0 and standard deviation
𝜎 .
• TRLWE sample: A pair (𝑎, 𝑏) ∈ T𝑁 [𝑋 ]𝑘+1, where 𝑎 is
uniformly sampled from T𝑁 [𝑋 ]𝑘 and 𝑏 = ⟨𝑎, 𝑠⟩ + 𝑒 . The
secret key 𝑠 is uniformly sampled from B𝑁 [𝑋 ]𝑘 , the error
𝑒 ∈ T is a polynomial with random coefficients sampled from
a Gaussian distribution with mean 0 and standard deviation
𝜎 . One usually chooses 𝑘 = 1; therefore, 𝑎 and 𝑏 are vectors
of size 1 whose coefficient is a polynomial.
• TRGSW sample: a vector of (𝑘 + 1)𝑙 TRLWE fresh samples.

LetM denote the discrete message space (M ∈ T𝑁 [𝑋 ] orM ∈
T). To encrypt a message𝑚 ∈ M, we add what is called a noiseless
trivial ciphertext (0,𝑚) to a fresh encryption of 0. We denote by
𝑐 = (𝑎, 𝑏) + (0,𝑚) = (𝑎, 𝑏 + 𝑚) ∈ T(R)LWE𝑠 (𝑚) the T(R)LWE
encryption of 𝑚 with key 𝑠 . A message 𝑚 ∈ Z[𝑋 ] can also be
encrypted in TRGSW samples by adding𝑚 ·𝐻 to a TRGSW sample
of 0, where 𝐻 is a gadget decomposition matrix. As we will not
explicitly need such an operation in this paper, more details about
TRGSW can be found in [10].

To decrypt a ciphertext 𝑐 , we first calculate its phase 𝜙 (𝑐) =
𝑏 − ⟨𝑎, 𝑠⟩ = 𝑚 + 𝑒 . Then, we need to remove the error, which is
achieved by rounding the phase to the nearest valid value inM.
This procedure fails if the error exceeds half the distance between
two elements ofM .

2.3 TFHE Bootstrapping
Bootstrapping is the operation that reduces the noise of a ciphertext,
thus allowing further homomorphic calculations. It relies on three
basic operations, which we briefly review in this section.
• BlindRotate: rotates a polynomial encrypted as a TRLWE
ciphertext by an encrypted index (under the form of a TLWE
encryption).
It takes several inputs: a ciphertext 𝑐 ∈ TRLWE𝑘 (𝑚), a vector
(𝑎1, · · · , 𝑎𝑝 , 𝑏) where ∀𝑖, 𝑎𝑖 ∈ Z2𝑁 , and a TRGSW ciphertext
encrypting the secret key 𝑠 = (𝑠1, · · · , 𝑠𝑝 ).
It returns a ciphertext 𝑐′ ∈ TRLWE𝑘 (𝑚 · 𝑋 ⟨𝑎,𝑠 ⟩−𝑏 ). This
paper will refer to this algorithm as BlindRotate.
• TLWE Sample Extract: extracts a coefficient of a TRLWE
ciphertext and converts it into a TLWE ciphertext. It takes
as inputs both a ciphertext 𝑐 ∈ TRLWE𝑠 (𝑚) and an index
𝑝 ∈ {0, · · · , 𝑁 − 1}. The result is a TLWE ciphertext 𝑐′ ∈
TLWE𝑠 (𝑚𝑖 ) where𝑚𝑖 is the 𝑖𝑡ℎ coefficient of the polynomial
𝑚. This paper will refer to this algorithm as SampleExtract.
• Public Functional Keyswitching: allows the switching of
keys and parameters from 𝑝 ciphertexts 𝑐𝑖 ∈ TLWE𝑘 (𝑚𝑖 )
to one 𝑐′ ∈ T(R)LWE𝑠 (𝑓 (𝑚1, · · · ,𝑚𝑝 )) where 𝑓 is a public

2https://tfhe.github.io/tfhe/
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linear morphism between T𝑝 and T𝑁 [𝑋 ]. That is to say, this
operation not only allows the packing of TLWE ciphertexts
in a TRLWE ciphertext, but it can also evaluate a linear
function 𝑓 over the input TLWEs. This paper will refer to
this algorithm as KeySwitch.

It is important to note that, during a BlindRotate operation, an
excessive noise level in the input TLWE ciphertext (the encrypted
index which we use to rotate the polynomial) can lead to errors in
the bootstrapping output resulting in incorrect ciphertexts (i.e., ci-
phertext which does not decrypt to correct calculation results). This
has implications for parameters and data representation choices
(number of digits and basis).

Algorithm 1 shows the TFHE Gate Bootstrapping [10], which aims
to evaluate a binary gate operation homomorphically and reduce
the output ciphertext noise at the same time. To that end, 0 and 1
are respectively encoded as 0 and 1

2 over T. The first step of this
algorithm consists of selecting a value �̂� ∈ T, which will be used
afterward to compute the coefficients of the polynomial, which
will rotate during the BlindRotate. We call this polynomial 𝑡𝑒𝑠𝑡𝑣
as seen in Step 3. Note that for any 𝑝 ∈ ⟦0, 2𝑁⟧ (where ⟦0, 2𝑁⟧
corresponds to the set of integers {0, · · · , 2𝑁 }), the constant term
of 𝑡𝑒𝑠𝑡𝑣 · 𝑋𝑝 is �̂� if 𝑝 ∈⟧𝑁2 ,

3𝑁
2 ⟧ and −�̂� otherwise. Step 4 returns

an accumulator 𝐴𝐶𝐶 ∈ TRLWE𝑠′ (𝑡𝑒𝑠𝑡𝑣 · 𝑋 ⟨𝑎,𝑠 ⟩−𝑏 ). Indeed, the
constant term of 𝐴𝐶𝐶 is −�̂� if 𝑐 is an encryption of 0 and �̂� if 𝑐
is an encryption of 1

2 . Then step 5 creates a new ciphertext 𝑐 by
extracting the constant term in position 0 from 𝐴𝐶𝐶 and adding
(0, �̂�). Thus, 𝑐 corresponds to an encryption of 0 if 𝑐 is an encryption
of 0 and𝑚 otherwise. On the other hand, if 𝑐 is an encryption of 1

2
and if we choose𝑚 = 1

2 , the algorithm returns a fresh ciphertext of
1
2 , that is to say the encoding of 1.
In Fig. 1, we present an example of TFHE gate bootstrapping

algorithm with Z4 = {0, 1, 2, 3} as input space. The outer circle in
Fig. 1 corresponds to the plaintext encoding in T as {0, 14 ,

2
4 ,

3
4 }.

Meanwhile, the inner circle sets the coefficients of the test poly-
nomial 𝑡𝑒𝑠𝑡𝑣 to 1, i.e., �̂� = 1

4 . Then, we rotate the test polynomial
during the bootstrapping by the phase 𝜙 (𝑐0) of the input ciphertext
𝑐0. In our example, we obtain as bootstrapping output either an
encryption of the encoding of 1 for positive inputs {0, 14 }, or an
encryption of the encoding of −1 for negative inputs { 24 ,

3
4 }.

Algorithm 1 TFHE gate bootstrapping [10]

Require: a constant 𝑚 ∈ T, a TLWE sample 𝑐 = (𝑎, 𝑏) ∈
TLWE𝑠 (𝑥 · 12 ) with 𝑥 ∈ B, a bootstrapping key 𝐵𝐾𝑠→𝑠′ =

(𝐵𝐾𝑖 ∈ TRGSW𝑆 ′ (𝑠𝑖 ))𝑖∈⟦1,𝑛⟧ where 𝑆 ′ is the TRLWE interpre-
tation of a secret key 𝑠′.

Ensure: a TLWE sample 𝑐 ∈ TLWE𝑠 (𝑥 .𝑚)
1: Let �̂� = 1

2𝑚 ∈ T (pick one of the two possible values)
2: Let 𝑏 = ⌊2𝑁𝑏⌉ and 𝑎𝑖 = ⌊2𝑁𝑎𝑖 ⌉ ∈ Z,∀𝑖 ∈ ⟦1, 𝑛⟧
3: Let 𝑡𝑒𝑠𝑡𝑣 := (1 + 𝑋 + · · · + 𝑋𝑁−1) · 𝑋

𝑁
2 · �̂� ∈ T𝑁 [𝑋 ]

4: 𝐴𝐶𝐶 ← BlindRotate( (0, 𝑡𝑒𝑠𝑡𝑣), (𝑎1, . . . , 𝑎𝑛, 𝑏 ), (𝐵𝐾1, . . . , 𝐵𝐾𝑛 ) )
5: 𝑐 = (0, �̂�) + SampleExtract(𝐴𝐶𝐶)
6: return KeySwitch𝑠′→𝑠 (𝑐)

2.4 TFHE Functional Bootstrapping
We can use Look-Up Tables to compute functions during the boot-
strapping operation. To do so, we replace the coefficients of the test
polynomial 𝑡𝑒𝑠𝑡𝑣 with the corresponding values of the LUT. Let us
assume that we want to evaluate the function 𝑓T via a LUT. Then, if
we retrieve the 𝑖𝑡ℎ coefficient of 𝑡𝑒𝑠𝑡𝑣 , we actually get 𝑓T (𝑚𝑖 ) where
𝑚𝑖 is the encrypted input to the bootstrapping. We refer to this idea
by programmable or functional bootstrapping [11, 12, 14, 20, 25].

In Fig. 1, we give an example of functional bootstrapping with
Z4 = {0, 1, 2, 3} as input space. We encode the images of {0, 14 } by
𝑓T as coefficients of the test polynomial (in the inner circle). Mean-
while, we deduce the images of { 24 ,

3
4 } by negacyclicity. Indeed, in

T, we can encode negacyclic functions, i.e., antiperiodic functions
with period 1

2 (verifying 𝑓T (𝑥) = −𝑓T (𝑥 + 1
2 )), where [0, 0.5[ cor-

responds to positive values and [0.5, 1[ to negative ones. In our
example, if we encrypt one of the following values {0, 14 ,

2
4 ,

3
4 } and

we give it as input to the functional bootstrapping algorithm, we
get {𝑓T (0), 𝑓T (1),−𝑓T (0),−𝑓T (1)}, respectively.

Almost all of the functional bootstrapping methods from state
of the art ([11, 12, 14, 20, 25]) take as input a single ciphertext. In
2021, Guimarães et al., [19] discussed two methods for performing
functional bootstrapping with larger plaintexts. They combine sev-
eral bootstrappings with different encrypted inputs by using a tree
or a chain structure. The ciphertexts are encryptions of digits that
come from the decomposition of plaintexts in a certain basis 𝐵.

2.5 Tree-based Method
Let 𝐵, 𝐵′, 𝑑 ∈ N∗ and𝑚 be an integer message. 𝐵 and 𝐵′ are the basis
on which to decompose the message. We then have𝑚 =

∑𝑑−1
𝑖=0 𝑚𝑖𝐵

𝑖 ,
with𝑚𝑖 ∈ ⟦0, 𝐵 − 1⟧. From this decomposition, we obtain 𝑑 TLWE
encryptions (𝑐0, 𝑐1, · · · , 𝑐𝑑−1) of (𝑚0,𝑚1, · · · ,𝑚𝑑−1) on half of the
torus T. We denote 𝑓 : ⟦0, 𝐵−1⟧𝑑 → ⟦0, 𝐵′−1⟧ the target function
and define 𝑔 as the following bijection:

𝑔 : ⟦0, 𝐵 − 1⟧𝑑 → ⟦0, 𝐵𝑑 − 1⟧
(𝑎0, 𝑎1, · · · , 𝑎𝑑−1) ↦→

∑𝑑−1
𝑖=0 𝑎𝑖 · 𝐵𝑖

We then encode a LUT for 𝑓 under the form of 𝐵𝑑−1 TRLWE ci-
phertexts. Each of these ciphertexts encodes a polynomial 𝑃𝑖 such
that:

𝑃𝑖 (𝑋 ) =
𝐵−1∑︁
𝑗=0

𝑁
𝐵
−1∑︁

𝑘=0
𝑓 ◦ 𝑔−1 ( 𝑗 · 𝐵𝑑−1 + 𝑖) · 𝑋 𝑗 ·

𝑁
𝐵
+𝑘

Then, we apply the BlindRotateAndExtract (the BlindRotate
directly followed by the SampleExtract in position 0) to each test
polynomial 𝑡𝑒𝑠𝑡𝑣 = TRLWE(𝑃𝑖 ) with 𝑐0 as a selector. We obtain
𝐵𝑑−1 TLWE ciphertexts, each corresponding to the encryption of
𝑓 ◦ 𝑔−1 (𝑚𝑑−1 · 𝐵𝑑−1 + 𝑖), for 𝑖 ∈ ⟦0, 𝐵𝑑−1 − 1⟧.

Finally, we use the KeySwitch operation from TLWE to TRLWE
to gather them into 𝐵𝑑−2 encrypted TRLWE, corresponding to the
LUT of ℎ, with:

ℎ : ⟦0, 𝐵 − 1⟧𝑑−1 → ⟦0, 𝐵′ − 1⟧
(𝑎0, 𝑎1, · · · , 𝑎𝑑−2) ↦→ 𝑓 (𝑎0, 𝑎1, · · · , 𝑎𝑑−2,𝑚𝑑−1)

We then repeat this operation, using the ciphertext 𝑐𝑖 at step 𝑖 , until
we obtain a single TLWE ciphertext of 𝑓 (𝑚0,𝑚1, · · · ,𝑚𝑑−1). Note
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TFHE gate booststrapping

before bootstrapping

before bootstrapping

after bootstrapping

after bootstrapping

TFHE functional booststrapping

Figure 1: TFHE Bootstrapping examples: the outer circles describe the inputs to the bootstrapping (i.e., ciphertexts over T).
Meanwhile, the inner circles represent the coefficients of the test polynomial 𝑡𝑒𝑠𝑡𝑣 . One of these coefficients is extracted as the
output of the bootstrapping after the BlindRotate.

that the tree-based method must be run independently as many
times as the number of digits in the output.

2.6 Multi-Value Bootstrapping
Multi-Value Bootstrapping (MVB) [9] refers to the method for evalu-
ating 𝑘 different LUTs on a single input with a single bootstrapping.
MVB factors the test polynomial 𝑃𝑓𝑖 associated with the function 𝑓𝑖
into a product of two polynomials 𝑣0 and 𝑣𝑖 , where 𝑣0 is a common
factor to all 𝑃𝑓𝑖 . In practice, we have:

(1 + 𝑋 + · · · + 𝑋𝑁−1) · (1 − 𝑋 ) ≡ 2 mod (𝑋𝑁 + 1)

Now by writing 𝑃𝑓𝑖 in the form 𝑃𝑓𝑖 =
∑𝑁−1
𝑗=0 𝛼𝑖, 𝑗𝑋

𝑗 with 𝛼𝑖, 𝑗 ∈ Z,
we get from the previous equation:

𝑃𝑓𝑖 =
1
2
· (1 + 𝑋 + · · · + 𝑋𝑁−1) · (1 − 𝑋 ) · 𝑃𝑓𝑖 mod (𝑋𝑁 + 1)

= 𝑣0 · 𝑣𝑖 mod (𝑋𝑁 + 1)

where:

𝑣0 =
1
2
· (1 + 𝑋 + · · · + 𝑋𝑁−1)

𝑣𝑖 = 𝛼𝑖,0 + 𝛼𝑖,𝑁−1 + (𝛼𝑖,1 − 𝛼𝑖,0) · 𝑋 + · · ·

+ (𝛼𝑖,𝑁−1 − 𝛼𝑖,𝑁−2) · 𝑋𝑁−1

This factorization makes it possible to compute many LUTs using
a unique bootstrapping. Indeed, it is enough to initialize the test
polynomial 𝑡𝑒𝑠𝑡𝑣 with the value of 𝑣0 during bootstrapping. Then,
after the BlindRotate operation, one has to multiply the obtained
𝐴𝐶𝐶 by each 𝑣𝑖 corresponding to the LUT of 𝑓𝑖 to get 𝐴𝐶𝐶𝑖 . Figure
2 illustrates the advantage of this method.

This optimization reduces the number of bootstrapping required
for an operation and, thus, the overall computation time.

3 A SHORT REMINDER ON THE AES
Advanced Encryption Standard (AES) is the name given to the Rijn-
dael algorithm, the winner of the NIST standardization competition
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Figure 2: Illustration of the MVB optimization. (a) represents
the classic method to process several bootstrapping, while
(b) represents the MVB optimization. As seen here, it reduces
the number of BlindRotate operations, which is the most
expansive one of the bootstrapping.

in 2000 [16]. It is a symmetric block cipher, defined to work with dif-
ferent key sizes. Several rounds are applied to the original message
to obtain an encrypted message. Each round consists of the same
operations performed in the same order. We chose to work on the
128-bits AES, which uses 10 rounds. The ciphertext is composed of
16 bytes such as 𝑐 = 𝑐0𝑐1 · · · 𝑐15 ∈ (F28 )16 and is encoded in what
we call a state matrix in the following way:

©«
𝑐0 𝑐4 𝑐8 𝑐12
𝑐1 𝑐5 𝑐9 𝑐13
𝑐2 𝑐6 𝑐10 𝑐14
𝑐3 𝑐7 𝑐11 𝑐15

ª®®®¬
The round operations affect this matrix as follows:

• SubBytes: the SubBytes operation is the only non-linear
transformation of the cipher. It is a permutation consisting
of an S-box applied to the bytes of the state matrix. As it acts
on the individual bytes of the state, it can be parallelized for
efficient execution.
• AddRoundKey: before the encryption, the secret key is "ex-
panded" into several round keys. The encryption process
relies only on these round keys and not the initial secret key.
In this transformation, the state is modified by combining it
with a round key with the bitwise XOR operation. Of course,
to do so, the size of each round key is equal to the size of
the ciphertext (in our case, 128 bits encoded in a round key
matrix to match the state matrix). That is to say, we have at
round 𝑖 ∈ {0, · · · , 9}:

©«
𝑐0 𝑐4 𝑐8 𝑐12
𝑐1 𝑐5 𝑐9 𝑐13
𝑐2 𝑐6 𝑐10 𝑐14
𝑐3 𝑐7 𝑐11 𝑐15

ª®®®¬ ⊕
©«
𝑘𝑖,0 𝑘𝑖,4 𝑘𝑖,8 𝑘𝑖,12
𝑘𝑖,1 𝑘𝑖,5 𝑘𝑖,9 𝑘𝑖,13
𝑘𝑖,2 𝑘𝑖,6 𝑘𝑖,10 𝑘𝑖,14
𝑘𝑖,3 𝑘𝑖,7 𝑘𝑖,11 𝑘𝑖,15

ª®®®¬ =©«
𝑐0 ⊕ 𝑘𝑖,0 𝑐4 ⊕ 𝑘𝑖,4 𝑐8 ⊕ 𝑘𝑖,8 𝑐12 ⊕ 𝑘𝑖,12
𝑐1 ⊕ 𝑘𝑖,1 𝑐5 ⊕ 𝑘𝑖,5 𝑐9 ⊕ 𝑘𝑖,9 𝑐13 ⊕ 𝑘𝑖,13
𝑐2 ⊕ 𝑘𝑖,2 𝑐6 ⊕ 𝑘𝑖,6 𝑐10 ⊕ 𝑘𝑖,10 𝑐14 ⊕ 𝑘𝑖,14
𝑐3 ⊕ 𝑘𝑖,3 𝑐7 ⊕ 𝑘𝑖,7 𝑐11 ⊕ 𝑘𝑖,11 𝑐15 ⊕ 𝑘𝑖,15

ª®®®¬
• ShiftRows: the ShiftRows step is a byte transposition that
cyclically shifts the rows of the state over different offsets.
For AES-128, row 0 is shifted over 0 bytes, row 1 over 1 byte,
row 2 over 2 bytes and row 3 over 3 bytes. As this operation
only alters the position of the bytes in the state matrix, it does
not require a homomorphic equivalent (instead of shifting
regular bytes, we shift homomorphic bytes).
• MixColumns: the MixColumns step is operating on the state
column by column via matrix multiplication. But in practice,
the authors do not implement the naive matrix product but
work with each byte of the state matrix individually. They
use a mix of scalar 𝐺𝐹 (256) multiplication and XOR, as vis-
ible in the original code. Therefore, this operation can be
parallelized.

A typical execution of the 128-bits AES begins with the first
AddRoundKey directly followed by the first iteration of the rounds.
Each round proceeds as follows:

(1) SubBytes
(2) ShiftRows
(3) MixColumns
(4) AddRoundKey

Except for the last round, which does not require the MixColumns
step.

About the Key Expansion– Key expansion is an operation
that may be performed once and for all, from the secret key. Indeed,
from the 128-bit key are derived eleven 128-bit round keys, which
are used in the AddRoundKey operation. As a result, to evaluate
the AES encryption or decryption algorithm, a server only needs
to know the round keys. This operation, consisting of XOR and
𝐺𝐹 (256)multiplication, is expensive in the homomorphic domain. It
is therefore more efficient for a client to generate its own key, derive
the round keys, and then homomorphically encrypt them. Sending
these eleven homomorphically encrypted round keys is faster than
creating the initial key, encrypting it in homomorphic, and sending
it to a server to perform the Key Schedule in the homomorphic
domain. For these reasons, we remove the key schedule from the
encrypted-domain computations.

4 AES GOES HOMOMORPHIC
To use the full potential of programmable bootstrapping, we aim to
transform the AES algorithm into a succession of LUT evaluations.
The permutation given by the Sbox is already in LUT form, so all
that remains is to modify the multiplication in 𝐺𝐹 (256) and XOR
operations. These are binary operations, which are not immediate
to put into LUT form. Indeed, evaluating a LUT is like dereferencing
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an array from an encrypted index. The LUT evaluation operator,
therefore, takes only one input: this encrypted index. If possible,
these operations should thus be transformed into unary table indi-
rection operations. Since AES works on a byte-by-byte basis, LUTs
must take 8-bits encrypted indexes and return an evaluation of
this index on 8 bits. In this section, we explain the various steps
involved in transforming the original code into the sequence of
8-bits-to-8-bits LUTs required for efficient homomorphic execution.

4.1 Optimizing the Original AES Code
The first step towards the homomorphization of a symmetric cryp-
tosystem is to look at the original code for small changes that
would ease the transition. AES makes no exception. However, we
quickly observed that the proposed C++ implementation (given by
the creators of the AES in [16]) is only "pseudo" 8-bits, as a carry
that requires an additional ninth bit is necessary for specific bytes
operations.

Indeed, this occurs during the 𝐺𝐹 (256) multiplication of two
integers (see Fig. 3). To compute this operation efficiently, the au-
thors use a generator 𝛼 = 𝑋 + 1 of the message space 𝐺𝐹 (256) �
F2 [𝑋 ]/⟨𝑋 8 +𝑋 4 +𝑋 3 +𝑋 + 1⟩. From this, they construct two tables of 256 el-
ements. The first one is Logtable, defined such as Logtable[𝛼𝑖 ] =
𝑖 . The second is Alogtable where Alogtable[𝑖] = 𝛼𝑖 . Then, in-
stead of a naive 𝐺𝐹 (256) multiplication, the result is obtained with
a simple sum of logs and two table indirections. Consequently and
as seen in Figure 3, when the mul(word8 𝑎, word8 𝑏) function is
called, two 8-bits integers representing the logs are added together.
And this sum may exceed 255, which is why the authors apply a
%255 to the result. We must change the whole function structure to
avoid this overhead and have an actual 8-bits implementation. But
it also implies some more profound changes in the entire code.

We deal with this issue by observing that there are only a few
calls to the mul function throughout the algorithm. During these
calls, the parameter 𝑎 only takes six different values. Indeed, a care-
ful reading of the code shows that 𝑎 ∈ {2, 3, 9, 𝑏, 𝑑, 𝑒}. This means
that we can separate the mul(𝑎, 𝑏) function into six mul_a(𝑏) func-
tions, with 𝑎 ∈ {2, 3, 9, 𝑏, 𝑑, 𝑒} by removing the variable 𝑎 of the
parameters and just encoding the correct values in the correspond-
ing new functions. Then, to work around the problematic addition
of two 8-bits integers, we compute and hardcode six tables Tlog_a
such that Tlog_a[𝑏] = (Logtable[a]+Logtable[b])%255. This
pre-calculation of the tables enables us to eliminate the problem
of the "pseudo" 8-bits implementation. At the same time, this al-
lows us to avoid an explicit modulo operation, which is difficult
to efficiently perform in the homomorphic domain. To optimize
a step further and reduce the number of tables indirections per
encrypted index, we finally consider the six new T_a tables such
that T_a[𝑏] =Alogtable[Tlog_a[b]] and use them directly into
our implementation.
We now have six functions of the following form:

word8 mul_a(word8 b) {
if (b) return T_a[b];
else return 0;

}

It is a simple function, but regarding a homomorphic evalua-
tion, we want our function to be as light as possible regarding the
number of operations performed. This is why, to avoid an explicit
evaluation of the if condition on 𝑏 (which should be performed via
a conditional assignment as FHE disallows branching for obvious
reasons), we modified the T_a tables so that they consider the case
where 𝑏 = 0. That is to say, for every 𝑎 ∈ {2, 3, 9, 𝑏, 𝑑, 𝑒}, T_a[0] = 0.
So our final implementations of the 𝐺𝐹 (256) multiplications are
straightforward and only require one indirection, as seen in Figure
4.

word8 mul_a(word8 b) {
return T_a[b];

}

Figure 4: Our final 𝐺𝐹 (256) multiplication operator. The new
multiplication functions are very simple and easy to execute
in the homomorphic domain, thanks to pre-calculation and
table hardcoding.

Therefore, this work on the multiplication functions allows us
to operate with only one indirection instead of three indirections,
an addition, a modulo operation, and an if condition in the original
code version. These changes allow us to convert the initial binary
𝐺𝐹 (256) multiplication operator into several unary ones, which is
ideal for a LUT transformation.

When looking for other possible optimizations, we realized we
achieved an optimal or nearly optimal form regarding LUT fac-
torization and, thus, LUT-based homomorphic evaluation (at least
when starting from the standard AES implementation). Indeed, the
structure of the MixColumns instructions prevent further factoriza-
tion. For example, if one considers the following instructions (in
MixColumn):

b[0][j] = mul_2(a[0][j]) ^ mul_3(a[1][j]) ^ a[2][j] ^ a[3][j];
b[1][j] = mul_2(a[1][j]) ^ mul_3(a[2][j]) ^ a[3][j] ^ a[0][j];
b[2][j] = mul_2(a[2][j]) ^ mul_3(a[3][j]) ^ a[0][j] ^ a[1][j];
b[3][j] = mul_2(a[3][j]) ^ mul_3(a[0][j]) ^ a[1][j] ^ a[2][j];

where a denotes the state matrix, then, although the mul_2 and
mul_3 LUTs could directly embed the Sbox LUT (assuming the in-
dices are made consistent with the effect of ShiftRows) the two
last terms cannot (since they do not require any 𝐺𝐹 (256) multipli-
cation, hence there is no LUT to factor the Sbox LUT with). For
instance, a[0][j] is used via mul_2 in b[0][j] calculations and
then as is for the others (b[1][j], b[2][j], b[3][j]). Finally, as
an additional optimization, we have merged the AddRoundKey func-
tion with the SubBytes one, as the first always precedes the second
one, for increased parallelism efficiency.

4.2 And Finally Going Homomorphic for Real
To make the most of TFHE programmable bootstrapping, we imple-
ment all operations (XOR, Sbox, 𝐺𝐹 (256) multiplication) via LUT
evaluations. Aswe nowhave a ciphertext-by-cleartext𝐺𝐹 (256)mul-
tiplication function that is performed only by means of a unique
indirection, this causes no issue. And by definition, the Sbox is a
LUT. So, the actual work here is to transform the XOR into a LUT.
The XOR is a binary operation in which, in our case, inputs are
bytes. That means we need a 256× 256 table to encode our XOR. As
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word8 mul(word8 a, word8 b) {
/* multiply two elements of GF(256)
* required for MixColumns and InvMixColumns
*/
if (a && b) return Alogtable[(Logtable[a] + Logtable[b])%255];
else return 0;

}

Figure 3: The original 𝐺𝐹 (256) multiplication implementation given in [16]. The sum of Logtable[a] + Logtable[b] may
exceed 255. Therefore, this operation requires more than 8 bits in practice, which is unsuitable for a homomorphic evaluation
with an 8-bits processor.

it is a binary operation, we must either use the tree-based method
(recalled in Sect. 2.5) or the chaining method, both introduced in
[19], which allows bootstrapping with several entries. Table 1 com-
pares the parameters needed depending on the method. In this
table, 𝐵𝑔 and 𝑙 denote the basis and levels associated with the gad-
get decomposition, 𝐵𝐾𝑆 and 𝑡 denote the decomposition basis and
the precision of the decomposition of the KeySwitch. Finally, 𝑞
denotes the size of the used plaintext size (meaning that the torus
is discretized on 𝑞 values), and 𝜖 is the error probability of one
MVB evaluation or one evaluation of the chaining method. We also
give the noises associated with the TRLWE and TLWE ciphertexts.
Note that these parameters are not universal; other parameters with
another error probability could also work. Given a message space
of size 𝐵, the chaining method requires using a plaintext space of
size 2𝐵2 (instead of only 2 × 𝐵 for the tree-based method). As such,
the size of the parameters dramatically increases as the basis 𝐵
increases. This growth of parameters jeopardizes the other speed
improvements that could come with the chaining method. Relying
on this comparison, we chose to work with the tree-based method,
which is thus more efficient in our case.

On top of this, the MVB optimization (Sect. 2.6) allows us to
evaluate a LUT with two input digits and one output digit in only
two bootstrappings. Still, as the parameters needed for calculation
in basis 256 are significantly larger (we have to work on the dis-
cretized torus on 512 values, using only the positive half), it will
not be efficient. Indeed, we need to use the cyclotomic polyno-
mial 𝑋 32768 + 1, which results in a very slow bootstrapping and
a non-implementable small variance (still for 135 bits of security
according to the lattice-estimator). Recall that the parameter sets
given for the chaining method are for illustration purposes as we
do not use that method in the paper and just aim at showing that
the tree-based method is more practical for basis 16. This makes it
interesting to break down the messages into smaller bases and to
use the tree-based method for every LUT evaluation. For example,
in order to perform an indirection into a 256 8-bits entries LUT,
when working in basis 16, we have to split the original table into
two 256 4-bits entries. For each of these two tables, we apply a two
levels tree-based method where, as illustrated by Figure 5 with the
LUT of the identity function, the first level extracts one encrypted
4-bits value from each block of 16 values (assuming, as we do, that
the first digit contains the least significant 4 bits) in the original
table. This leads to a 16 (encrypted) 4-bits entries table, and the
second level extracts the encrypted 4-bits value from the latter.

More generally, the number 𝑁𝑏𝑜𝑜𝑡 of bootstrapping needed with
the tree-based method increases with the number of input digits

𝑑 and the number of output digits 𝑑′ as well as the basis 𝐵 chosen
for the decomposition. In fact, for a complete evaluation of a LUT
via the classic tree-based method, we have 𝑁𝑏𝑜𝑜𝑡 = 𝑑′ ×

∑𝑑−1
𝑖=0 𝐵

𝑖

and with the MVB, we have 𝑁𝐵′
𝑏𝑜𝑜𝑡

= 𝑑′ × (1 +∑𝑑−2𝑖=0 𝐵
𝑖 ). Table 2

provides the number of bootstrapping per operation (256 × 8bits
LUT dereferencing and 8-bits-by-8-bits XOR) depending on the
decomposition basis for the ciphertexts (using the MVB-optimized
tree-based method).

Although the tree-based method requires more operations, the
smaller the decomposition basis, the smaller the parameters to be
used. Small ciphertext sizes allow small parameters and, therefore,
faster operations. A tradeoffmust therefore be achieved between the
number of bootstrapping operations performed and the parameters’
size. For this reason, we produce a benchmark of the execution time
of LUT evaluation depending on the ciphertext decomposition.
We consider the following different decompositions:

• basis 256: it is not a decomposition per se, but we have to be
sure that this basis is not the most advantageous one
• basis 16: the message is decomposed into two digits in basis
16 (4 bits per digit)
• basis 8: the message is decomposed into three digits in basis
8 (3 bits per digit, but only 2 bits for the most significant
digit)
• basis 4: the message is decomposed into four digits in basis
4 (2 bits per digit)

For this, we first implemented an efficient homomorphic operator
to evaluate any LUT using TFHE programmable bootstrapping and
MVB. We then used it with our different decompositions and their
associated parameter sets. The results of this experiment are given
in Table 3. It is thus clear that basis 16 is the optimal choice regarding
the execution time per LUT evaluation as well as for a full AES
execution (as the overall number of LUT evaluations is independent
of the basis choice). Note that there is no linearity between the
timings due to the number of multiplications involved by the MVB
during the first bootstrapping. Additionally, Table 4 provides the
number of bootstrapping needed with the MVB optimization for a
full AES evaluation, depending on the decomposition basis. We now
have everything needed to obtain homomorphic versions of the
mul_a functions. To do so, as already emphasized, we decompose
every table T_a into two tables of 256 basis 16 digits, i.e., one per
digit of the decomposition. We do the same with the Sbox table.
Finally, we use a similar approach to create the 4-bits-by-4-bits
XOR operator. We do so by means of a 16 × 16 table with 4-bit
entries, which is much easier to handle than a 256× 256 (with 8-bits
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Table 1: Parameter sets depending on the LUT evaluation method and the chosen decomposition basis (𝜆 ≈ 128).

basis 𝑛 𝑁 𝑙 𝐵𝑔 𝐵𝐾𝑆 𝑡 𝑞 𝜖 TRLWE noise TLWE noise
4 850 2048 2 2048 1024 2 32 2−32 9.6 × 10−11 1.27 × 10−6

chaining method 8 1024 8192 1 268435456 1024 2 128 2−27 10−45 5.6 × 10−8
16 1100 32768 1 4294967296 8192 2 512 2−30 1.4 × 10−8 10−248
4 700 1024 5 16 1024 2 8 2−30 5.6 × 10−8 1.9 × 10−5

tree-based method 8 700 2048 2 2048 1024 2 16 2−23 9.6 × 10−11 1.9 × 10−5
16 1024 2048 3 256 1024 2 32 2−23 9.6 × 10−11 6.5 × 10−8

Figure 5: Illustration of the tree_based method on the identity function. The message is𝑚 = 9 = 1 · 40 + 2 · 41 and its encryption
is 𝑐 = (𝑐0, 𝑐1) = ( [1] , [2]). Red arrows indicate bootstrappings.

Table 2: Number of bootstrapping for one XOR or one LUT
evaluation (using MVB) depending on the decomposition
basis.

basis # XOR # LUT
256 2 1
16 4 4
8 6 30
4 8 88

entries) needed without the decomposition (yet another pro for
the basis 16 decomposition). This being done, we now have duly
"translated" our optimized-for-FHE version of the AES code into a
real homomorphic one.

Table 3: Unitary timings for bootstrapping and full LUT eval-
uation depending on basis and parameter choices (𝜆 ≈ 128).

basis single boot. complete
LUT eval.

𝑛 𝑁

256 1.5s 1.5 s 1024 32768
16 0.029s 0.3 s 1024 2048
8 0.015s 1.4 s 700 2048
4 0.007s 2.0 s 700 1024

Table 4: Number of operations and the corresponding number
of bootstrapping depending on decomposition basis. Readers
are reminded that AES-128 consists of a RoundKey, followed
by 9 classic rounds and a final round that does not include
the MixColumns operation.

basis function # XOR # LUT # Boot
AddRoundKey 16 0 32
SubBytes 0 16 16

256 MixColumns 48 32 128
Round 64 48 176
Full AES 608 448 1664
AddRoundKey 16 0 64
SubBytes 0 16 64

16 MixColumns 48 32 320
Round 64 48 448
Full AES 608 448 4224
AddRoundKey 16 0 96
SubBytes 0 16 480

8 MixColumns 48 32 1248
Round 64 48 1824
Full AES 608 448 17088
AddRoundKey 16 0 128
SubBytes 0 16 1408

4 MixColumns 48 32 3200
Round 64 48 4736
Full AES 608 448 44288
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4.3 Details about the Homomorphization of the
XOR Operator

Following the previous section, we give details about our homo-
morphic XOR operator, which is a relevant concrete example of
our tree-based method approach. On the one hand, we have to
transform the classic 8-bits-to-8-bits XOR operator to fit the chosen
decomposition basis, and on the other hand, we have to transform
it so we can evaluate it via a LUT. As already emphasized (Table
3), basis 16 is the best one for our AES homomorphic execution
attempt. This means that we decompose our messages on the fol-
lowing form𝑚 =𝑚0+𝑚1 ·16 and that the corresponding ciphertext
is a vector of the form 𝑐 = (𝑐0, 𝑐1) = ( [𝑚0] , [𝑚1]). So, to compute
the XOR of two ciphertexts 𝑐 and 𝑐′ in basis 16, we have to compute:

𝑐 ⊕ 𝑐′ = (𝑐0, 𝑐1) ⊕ (𝑐′0, 𝑐
′
1) = (𝑐0 ⊕ 𝑐

′
0, 𝑐1 ⊕ 𝑐

′
1)

We thus have to evaluate a 4-bits-by-4-bits XOR on the ciphertexts.
For this, we dereference the double input table of 4-bits XOR, which
has size 16 × 16. The tricky part is to choose the correct way to
construct the test polynomials from this table for the tree-based
method. Indeed, on the first step of the tree-based method, we have
16 test polynomials. Each one must encode the coefficient of a unary
XOR. That is to say, the first polynomial 𝑃0 encodes the values of
the unary operation xor_by_0(𝑖) such that for 𝑖 ∈ {0, 1, · · · , 15}
xor_by_0(𝑖) = 𝑖 ⊕ 0, the second polynomial 𝑃1 encodes xor_by_1,
etc. So when applying the bootstrapping on these polynomials
with selector 𝑐0 = [𝑚0], we obtain 16 new ciphertexts encoding
xor_by_m0 that we put together on a polynomial 𝑃𝑓 𝑖𝑛𝑎𝑙 . We then
apply the bootstrapping on the new polynomial 𝑃𝑓 𝑖𝑛𝑎𝑙 with selector
𝑐′0 =

[
𝑚′0

]
, and we obtain the final results, which is an encryption

of 𝑐0 ⊕ 𝑐′0. The method is illustrated in Fig. 6.
By using the same method, we can easily compute 𝑐1 ⊕ 𝑐′1, and

thus obtain the vector 𝑐 ⊕ 𝑐′ = (𝑐0 ⊕ 𝑐′0, 𝑐1 ⊕ 𝑐
′
1) encoding𝑚 ⊕𝑚

′.

4.4 Remarks and Perspectives on LUT
Evaluated Operations

In this section, we briefly present our various operations in a unified
way and illustrate that it allows to express more general operations
than needed for our AES execution attempt. A distinction must be
made between ciphertext-ciphertext binary operators and cleartext-
ciphertext binary operators. The latter is the case of the 𝐺𝐹 (256)
multiplication operator in the AES algorithm, which we turned into
several unary operators (the mul_a functions, which could easily
have been as many as 256 if it had been required). Regarding the
case of ciphertext-ciphertext operators, we can divide them into
two types: the bitwise ones and the others.

Bitwise ciphertext-ciphertext operator - The AES imple-
mentation requires an XOR operation, which can finally be im-
plemented using the same tool as for the unary functions (Sbox,
mul_a). Slightly loosely speaking, let us say that our 8-bits-to-4-bits
table dereferencing tool takes the following form LUT(𝑐0, 𝑐1, 𝑡𝑎𝑏𝑙𝑒)
and in basis 16 LUT(𝑐0, 𝑐1, 𝑡𝑎𝑏𝑙𝑒) = 𝑡𝑎𝑏𝑙𝑒 [𝑐0 + 𝑐1 · 16]. To evaluate
the unary operator of the Sbox (or mul_a), one must call LUT(𝑐0, 𝑐1,
Sbox_0) and then LUT(𝑐0, 𝑐1, Sbox_1), where Sbox_0 and Sbox_1
respectively denote the LSB and MSB of Sbox, to obtain the two
result digits and reform Sbox[𝑐0 + 𝑐1 · 16] (respectively LUT(𝑐0, 𝑐1,
mul_a_0) and LUT(𝑐0, 𝑐1, mul_a_1)). But for XOR, we use LUT(𝑐0, 𝑐′0,

XOR) and then LUT(𝑐1, 𝑐′1, XOR) as explained above. In the first
case, we use the same ciphertexts on different tables; in the second
case, we use different ciphertexts on the same table. This means
a binary bitwise homomorphic operator is as easy (and costly) to
implement as a unary non-bitwise operator. Furthermore, such a bi-
nary operator can easily be adapted to any bitwise operation (AND,
NOR, etc.) or unary operation by modifying the initial polynomials
accordingly.

Non-bitwise ciphertext-ciphertext operator - Although not
needed for AES, the case of non-bitwise ciphertext-ciphertext oper-
ators is a bit more involved. Let us take the example of the addition
of two encrypted basis 256 messages 𝑐 and 𝑐′ decomposed in basis
16. Two different tables with 256 4-bits entries then come into play:
ADD, which encodes the addition of two digits, and CAR, which han-
dles the carry. So, using the same dereferencing tool as above, a
simple addition over Z256 can be broken down into 4 invocations
of the operator:

LUT(𝑐0, 𝑐′0, ADD) = 𝑟𝑒𝑠0
LUT(𝑐0, 𝑐′0, CAR) = 𝑟

LUT(𝑐1, 𝑐′1, ADD) = 𝑣

LUT(𝑣, 𝑟, ADD) = 𝑟𝑒𝑠1

where 𝑟𝑒𝑠0 + 𝑟𝑒𝑠1 · 16 = 𝑐 + 𝑐′. The basic dereferencing tool is the
same for all of these cases and is, in essence, universal, although
on a case-by-case basis, there might be more optimized methods
for certain operations (e.g., by combining the tree-based and chain-
basedmethods, the latter being, for example, more efficient for carry
computations). This gives interesting perspectives for building a
more general optimized “instruction set”.

5 EXPERIMENTAL RESULTS
5.1 TFHE Library Implementation
We worked with TFHElib3 using the parameters given in Table 1
for the tree-based method with basis 16. As a reminder, we take
𝐵𝑔 = 256 and 𝑙 = 3 as the basis and levels associated with the
gadget decomposition. For the KeySwitch, we take 𝐵𝐾𝑆 = 1024
and 𝑡 = 2 as the decomposition basis and the precision of the
decomposition. Finally, as we work with a plaintext space of size
16, we work on the discretized torus on 𝑞 = 32 values. We chose
these parameters specifically to enable MVB evaluation with error
probability 𝜖 = 2−23. According to the lattice estimator4, these give
us at least 128 bits of security. The first step was to implement the
tree-based method and its MVB optimization. Indeed, none of these
methods are part of the TFHE library. Furthermore, we had to adapt
the code to be able to use vectors of TLWE and TRLWE samples
(as our ciphertexts are decomposed into 2 digits in basis 16, we put
them in vectors of 2 elements). Then, wemodified theMVB operator
to turn it into a generic LUT evaluation tool. This new operator
takes as input a vector of ciphertexts, the number 𝑑 of input digits,
the number 𝑑′ of output digits, the decomposition basis 𝐵 and the
LUT to be evaluated. Depending on how it is called, this operator
can perform our XOR as well as our 𝐺𝐹 (256) multiplications and
Sbox.

3https://tfhe.github.io/tfhe/
4https://github.com/malb/lattice-estimator

https://tfhe.github.io/tfhe/
https://github.com/malb/lattice-estimator
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Figure 6: The principle of the tree-based method applied to the XOR with basis 16. The green color indicates that the content of
the box is encrypted.

5.2 Parallelization
The purpose of transciphering is to avoid transferring large cipher-
texts. Since a server has more computing power than a client, it
can efficiently exploit several cores to parallelize computations and
optimize execution times. With that respect, AES is naturally paral-
lelizable up to a certain degree: within each round step, operations
can be performed simultaneously on each byte of the state matrix
(except for the ShiftRows step). This is why, in continuing our
work, we use the OpenMP library to parallelize our code and op-
timize the execution times of our homomorphic AES. We run our
tests on two machines. The first one is a 12th Gen Intel(R) Core(TM)
i7-12700H CPU (using six cores) laptop with 64 Gib total system
memory with an Ubuntu 22.04.2 LTS server. The second is an AMD
EPYC 7702P 64-cores Processor server with an Ubuntu 20.04.6 LTS
server. In the following sections, we will refer to them respectively
as i7-laptop and AMD-server.

Using the OpenMP library, we first parallelize onto the six cores
on the i7-laptop. As it is a standard laptop, it is interesting to see
how a partially parallelized homomorphic AES can work. Indeed, it
gives a reasonable hint of the potential of a larger scale paralleliza-
tion. That is why we parallelize every round function, except for
the ShiftRows one, as it only involves ciphertexts reorganization
within the state matrix. Still, thanks to OpenMP, we could use 16
cores for a larger-scale parallelization on the AMD-server (which
hosts 64 cores in total). As the server has less powerful cores, it is
slower than the i7-laptop in sequential time. But, by running a
sequential execution and a full parallelized one, we can measure
the speedup factor induced by parallelization. For instance, the
execution parallelized on 16 cores is 9.5 times faster than the se-
quential one on the AMD-server. Results can be found in Table 5.
The last column of this table indicates the ratio between the (fastest)
"i7-server" time and the other (slower) ones.

A perspective is to go further in the parallelization of the AES
evaluation. Indeed, we can also parallelize the tree-based method
and execute the computation of each decomposition digit at the
same time. This method will need 32 cores, but it can divide the
execution time almost by 2.

5.3 Computation Times
This section summarizes the results of our implementations in Ta-
ble 5. Even if our measured speedups are not linear in the number
of cores, we improve the state of the art as the so far best-known
implementation runs in 4.2 minutes with 16-thread parallelization
[24] using the standard programmable bootstrapping in base 16
as implemented in Zama’s Concrete 5. However, note that no im-
plementation details were provided (to the best of our knowledge)
beyond a poster presented by Stracovsky et al. at FHE.org 2022 [24].
In [18], Gentry et al. use a packed implementation with BGV so that
each slot can hold a state byte. The round operations are computed
as single linear transformations over 𝐺𝐹 (28)16. These linear trans-
formations combine several permutations that are computed via
automorphism evaluation and additions. In [23], Mella and Susella
improve these latter results by using an optimized data representa-
tion to further factor some of these operations in ciphertext slots.
As they relied heavily on batching, these works focused primarily
on optimizing the amortized time metric which is relevant only
when one has to perform many independent AES executions in
parallel. As Table 5 shows, we obtain a sequential time comparable
to [24] on i7-laptop and a very improved one with parallel exe-
cution. Indeed, our parallelized version on i7-laptop is 4.6 times
more efficient than Stracovsky et al.’s [24] and almost 20 times more
efficient than Gentry et al.’s. [18] in terms of latency. Furthermore,
our parallelized version on AMD-server is almost 7 times faster
than [24] and 30 times faster than [18] as it only takes 3% of its
execution time.

6 CONCLUSION
In this paper, we have proposed a homomorphic AES implemen-
tation relying on two encrypted-domain “instructions”, a unary
256-by-8 bits table indirection, and a binary 8-bit XOR instruction,
both running over encryptions of nibbles (the cute name for hex
digits) and relying on functional bootstrapping for efficiency. Our
work illustrates that, even when starting from the standard AES
implementation, this approach significantly improves the state of
5https://github.com/zama-ai/concrete
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Table 5: Our execution times compared to the state of the art (the "i7-server" time corresponds to an extrapolation of the
speedup observed with 16 threads on the AMD-server from the i7-laptop sequential time as we did not have an i7-based server
to perform experiments).

execution time time ratio
i7-laptop (1 thread) 4.5 mins = 270 secs 9. 4
i7-laptop (6 threads) 54.31 secs 1.9
AMD-server (1 thread) 5.7 mins = 342 secs 11.9
AMD-server (16 threads) 36.39 secs 1.3
"i7-server" (16 threads) 28.73 secs 1
Gentry et al. [18] (1 thread) 18 mins 37.6
Mella and Susella [23] (1 thread) 22 mins 45.9
Stracovsky et al. [24] (16 threads) 4.2 mins = 252 secs 8.8

the art of homomorphic AES execution timings. In terms of per-
spectives, beyond improved parallelism, it would be interesting
to consider other non-standard forms for the AES as a starting
point in a search for ones that may lead to smaller numbers of
homomorphic operations (i.e., in fine, fewer bootstrapping). For
example, a non-public implementation optimized for constrained
embedded systems by inlining, loop unrolling, and careful instruc-
tions reorganization was brought to our attention. In our terms,
such an implementation would lead to 68 XOR and 32 LUT per AES
round (vs. 64 XOR and 48 LUT when starting from the standard
implementation as we did). Although we do not expect to gain
one or more orders of magnitude, this could lead to an additional
10% performance improvement, at least in the sequential execu-
tion times we report in this paper (as this version appears more
difficult to parallelize at first glance). We could also try to exploit
the emerging full-Torus functional bootstrapping methods, such as
ComBo [13], which may allow smaller parameters and, thus, faster
bootstrapping evaluations. Another approach that could potentially
lead to further timing improvements would be to investigate how
the techniques introduced in [5] may help to either or both increase
the basis size or factor larger portions of the AES algorithm in single
WoP-PBS operator evaluations. Yet another interesting perspective
would be, as hinted in Sect. 4.4, to extend the embryonic “instruc-
tion set” defined in this paper in order to apply this approach to
other algorithms more easily.
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