Compton-TDCR; a detector system for radionuclide metrology using simultaneous measurements of the light yield non-linearity and timing properties of scintillators
Résumé
Almost pure beta-emitting radionuclides are challenging to detect and differentiate due to their rather short mean free path in scintillator leading to a poor light production. The LNHB is developing new measurement techniques based on the Compton interaction coincidences method to study the non-linearity of the light yield of scintillators. The major highlights of the system are the use of three-photomultiplier tubes and of a high-efficiency TDCR device [1] for absolute measurements of the average number of detected photons, together with the application of recently developed corrections for accidental coincidences. The performance of the system is demonstrated by measuring the dependence of the light yield on the deposited energy for widely used commercial liquid scintillators.
Fichier principal
Scint_2022_Compton_gas_abstract.pdf (636.52 Ko)
Télécharger le fichier
TDCR-Compton_SCINT_2022_BS.pptx (4.45 Mo)
Télécharger le fichier
Format | Présentation |
---|---|
Origine | Fichiers produits par l'(les) auteur(s) |