Cross-modal classification by completing unimodal representations
Résumé
We argue that cross-modal classification, where models are trained on data from one modality (e.g. text) and applied to data from another (e.g. image), is a relevant problem in multimedia retrieval. We propose a method that addresses this specific problem, related to but different from cross-modal retrieval and bimodal classification. This method relies on a common latent space where both modalities have comparable representations and on an auxiliary dataset from which we build a more complete bimodal representation of any unimodal data. Evaluations on Pascal VOC07 and NUS-WIDE show that the novel representation method significantly improves the results compared to the use of a latent space alone. The level of performance achieved makes cross-modal classification a convincing choice for real applications.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...