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ABSTRACT
We argue that cross-modal classification, where models are
trained on data from one modality (e.g. text) and applied to
data from another (e.g. image), is a relevant problem in mul-
timedia retrieval. We propose a method that addresses this
specific problem, related to but different from cross-modal
retrieval and bimodal classification. This method relies on a
common latent space where both modalities have compara-
ble representations and on an auxiliary dataset from which
we build a more complete bimodal representation of any uni-
modal data. Evaluations on Pascal VOC07 and NUS-WIDE
show that the novel representation method significantly im-
proves the results compared to the use of a latent space
alone. The level of performance achieved makes cross-modal
classification a convincing choice for real applications.

1. INTRODUCTION
We are interested into cross-modal classification, where

models are trained on data from one modality and applied to
data from another modality. More specifically, we consider
here cases where training is on labelled textual-only data
and testing on visual data or, symmetrically, training on
labelled visual-only data and testing on textual data.

This task has not been extensively investigated in the lit-
erature, first and foremost because text and images are nor-
mally not described with the same features, and usually not
even in the same vector space, making the task quite incon-
gruous. However, beyond an academic interest, we believe
this task also has an increasing practical interest. Suppose,
for example, that classifiers for many concepts have been
learned from textual data because of the massive availabil-
ity of such labeled data. One could wish to detect these
concepts on content corresponding to another modality, e.g.
images, even if class labels are not (yet) available for this
content. Such a situation may become more common with
the current evolution of micro-blogging, that changes from
purely textual content (historical Twitter) to multi-modal
content (current Twitter) or purely visual content (Insta-
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gram). Furthermore, the study of the cross-modal classifi-
cation task allows to explore in a more clear setting methods
that aim to make the best use of the many datasets that mix
unimodal and bimodal data.

Cross-modal classification can be seen as a step beyond
bimodal image classification that usually considers images
associated to keywords or sentences (e.g. captions) as input
data and uses both visual and textual content to solve the
task. Cross-modal classification is further related to cross-
modal tasks such as text illustration or image annotation
that require to match the information from one modality to
the other. Various fusion approaches have been extensively
employed with some success to address bimodal classifica-
tion, as in e.g. [23]. However, for cross-modal retrieval it
was necessary to devise methods that are able to relate the
two modalities more closely. The development of a common
latent representation space, resulting from a maximization
of the “relatedness” between the different modalities, is a
generally adopted solution. These methods typically rely on
Canonical Correlation Analysis or its kernel extension [10,
12, 6, 9] and on deep learning [17, 22, 8, 7, 15, 24].

In the common latent space, visual and textual informa-
tion have similar representations and become directly com-
parable. Hence, it is perfectly conceivable to train a classi-
fier on vectors of the common space that are projections of
textual features and predict an output for a vector that is
a projection of a visual feature. Such a common space was
employed for cross-modal retrieval, i.e. information retrieval
with both unimodal and multimodal queries [17, 22, 12, 22,
9, 7]. However, to the best of our knowledge, no attempt was
made to employ classifiers as we suggested. This is precisely
the question we investigate in this paper.

As we show in Section 4, the direct approach described
above is not very effective for cross-modal classification. This
may explain why corresponding results have not been re-
ported in the literature. We propose instead to “complete”
the projection of a unimodal feature on the common space
with information coming from the other modality. For this,
we suggest to rely on an auxiliary multimodal dataset that
acts as a set of connections between the modalities within
the common latent space. Such a dataset is always available,
as it is required for obtaining the common space. However,
we further consider the case where the auxiliary dataset is
totally different from the one employed to learn the common
space. While we also mention a “naive” approach based on
the auxiliary dataset, we propose a more sophisticated one
to identify the complementary information, leading to sig-
nificantly better results. Last, our method includes a step



that aggregates the original vector coming from the projec-
tion of a unimodal feature with the identified complementary
information to synthesize a unique representative vector of
the document. This new representation thus embeds both
modalities. Consequently, learning a classifier with such a
representation and applying it to unimodal documents nat-
urally leads to much better results than the “direct” ap-
proaches.

The rest of the paper is organized as follows. In Section 2
we briefly review recent work having more direct connections
with cross-modal classification. The approach we propose,
including the projection on a common space, the “comple-
tion” of the missing modality and the construction of an
aggregated representation, is presented in Section 3. Sec-
tion 4 reports the evaluation results on Pascal VOC07 and
NUS-WIDE. Comparisons are performed with two baselines,
showing that the proposed method leads to significant per-
formance improvements. We eventually compare the cross-
modal classification results we obtained to state-of-the-art
results concerning cross-modal retrieval, as well as unimodal
and bimodal classification, showing that the performance
level attained in cross-modal classification makes it a con-
vincing choice for real applications.

2. RELATED WORK
While different, cross-modal classification relates to cross-

modal retrieval. Recent work in this area is based on the
projection of visual and textual features onto a common la-
tent space. Canonical Correlation Analysis (CCA) and its
kernelised version (KCCA) were applied to cross modal re-
trieval in the seminal work of [10]. The principle is to com-
pute a common latent space from both visual and textual
features such that the correlation between the projections of
both modalities for a given bi-modal dataset is maximized.
All the documents of a reference database are then projected
onto the common latent space. When a query is processed,
it is also projected onto this space and its nearest neigh-
bors can be found directly, independently of their original
modality (visual or textual), according to their similarity in
the latent space.

A refinement was proposed by [12] to take into account
the objects present in a scene with their relative significance
within that scene. This is modelled by the rank of the tags
used by an “ordinary user” to describe the scene. Then,
KCCA is employed with an average kernel over three fea-
tures to describe the visual aspect and three other features
for the textual aspect, including the relative and absolute
tag rank.

An important extension to the method of [10] was put for-
ward in [9], where a third view was added to the traditional
two-view algorithm. Above the visual and textual view, se-
mantic classes are also considered. They are derived from
the ground-truth annotations, the search keyworks used to
download the images or, in an “unsupervised scenario”, from
a set of clusters obtained from the tags. KCCA is reformu-
lated as a linear CCA applied to the kernel space, following
the idea of approximate kernel maps [19].

In Semantic Correlation Matching [6] the image and text
features projected onto a KCCA space are used to build se-
mantic features, i.e. a document is represented as a set of su-
pervised classifiers learned from projections on the common
latent space. These classifiers are only employed to repre-
sent a unimodal document and the contribution addresses

cross-modal retrieval alone. Ahsan et al. [1] employed the
concatenation of textual and visual KCCA-descriptors as in-
puts of a clustering algorithm to perform a bi-modal task,
social event detection.

As an alternative to KCCA for obtaining a common la-
tent space, several recent publications investigated deep net-
works [17, 22, 8, 7, 15, 24]. Among them, Ngiam et al. fo-
cuses on the the use of a deep autoencoder to learn features
over multiple modalities. Similarly to the present paper,
they are interested in cross-modal learning, although they
focus on leaning representations of speech audio coupled
with videos of the lips. Their approach explicitly learns the
absence of a modality, by feeding the network with incom-
plete data during training. Results are nevertheless much
better when CCA is first applied to learn a common repre-
sentation. To handle a unimodal document, [22] propose to
complete it by clamping the observed modality at the inputs
of their Restricted Boltzman Machine and sampling the hid-
den modalities from the conditional distribution by running
the standard alternating Gibbs sampler.

More recently, [7] addresses cross-modal retrieval by train-
ing a “correspondence” autoencoder between visual and tex-
tual features. It allows to learn a common latent space in
which cross-modal retrieval is performed directly, as in [10].
However, cross-modal learning is not investigated in [7], nor
modality completion.

The recent literature has also addressed the question of
“completing” a missing modality only. In [23], visual classi-
fiers are “enhanced” with textual ones. However, contrary to
our approach, they use the original visual and textual fea-
ture without projecting them onto a common space. Hence,
the textual classifiers can not employ visual data as input
and similarly for visual classifiers and textual inputs.

3. PROPOSED APPROACH
Cross-modal classification consists in training models on

data from one modality (e.g. text) and applying them to
data from another modality (e.g. image). This requires uni-
modal labelled training data from the first modality and
unimodal testing data from the other modality. However,
to relate the two modalities, an auxiliary bimodal dataset
should also be available. There is no need for this dataset
to have class labels. As in many cross-modal retrieval meth-
ods, this auxiliary dataset is employed for learning a “com-
mon” latent space for the two modalities. The projection of
unimodal data on this common space makes data represen-
tations for the two modalities directly comparable but, as
shown in Section 4, this is not sufficient for obtaining good
results in cross-modal classification.

What we suggest here is to employ the auxiliary bimodal
dataset not only for learning the common latent space but
also for building a bimodal representation for any unimodal
data. Indeed, given a unimodal example, we expect the aux-
iliary dataset to provide relevant information concerning the
missing modality. To train the classifiers, such a bimodal
representation is first obtained for each unimodal labelled
training example and then learning is performed with these
synthetic bimodal representations. For each unimodal test-
ing example (in the other modality than the one used for
training), first the bimodal representation is built with the
help of the auxiliary dataset and then the available classi-
fiers are applied to this representation. Figure 1 illustrates
this approach to cross-modal classification.



Figure 1: Illustration of the proposed approach for cross-modal classification

To obtain the common latent space we employ here Ker-
nel Canonical Correlation Analysis [10] because it has a clear
theoretical foundation and was extensively used in the cross-
modal retrieval literature (e.g. [10, 12, 6, 9]). However, we
believe that the novel later stages we propose, for represen-
tation completion and aggregation, can be employed with
alternative solutions for building the common latent space.
Joint text-image representations could be obtained by using
e.g. Latent Dirichlet Allocation, Partial Least Squares or
deep neural networks. The choice of an algorithm to com-
pute the joint representations should nevertheless be made
in compliance with the characteristics of the base unimodal
representations employed. The evaluation of our completion
approach with alternative latent representations is beyond
the scope of this paper.

3.1 KCCA for “common” space learning
For data simultaneously represented in two different vec-

tor spaces, CCA [10] seeks maximally correlated linear sub-
spaces of these spaces. Let XT , XI be two random variables
with values in RdT and respectively RdI . Given N samples
{(xTi , xIi )}Ni=1 ⊂ RdT ×RdI , CCA simultaneously seeks direc-
tions wT ∈ RdT and wI ∈ RdI that maximize the correlation
between the projections of xT onto wT and of xI onto wI :

w∗T , w
∗
I = arg max

wT ,wI

wT
′
CTI wI√

wT
′ CTT wT wI

′ CII wI
(1)

with CTT and CII the autocovariance matrices of XT

and XI respectively, while CTI is the cross-covariance ma-
trix. The solutions w∗T and w∗I are the eigenvectors of
C−1
TTCTIC

−1
II CIT and respectively C−1

II CITC
−1
TTCTI associ-

ated to their d largest eigenvalues. These eigenvectors
define the maximally correlated d-dimensional subspaces
UT ⊂ RdT and respectively UI ⊂ RdI . While these are lin-
ear subspaces of two different spaces, they are often referred
to as the “common” representation space.

In Kernel CCA (KCCA, [10]) the linearity constraint is re-
moved by using the “kernel trick” to first map the data from
each initial space to the reproducing kernel Hilbert space
(RKHS) associated to the selected kernel and then looking
for correlated subspaces in these RKHS. KCCA seeks 2d vec-
tors of coefficients {αT,k}dk=1, {αI,k}dk=1 ∈ RN defining the
maximally correlated subspaces. They are solutions of

α∗T , α
∗
I = arg max

αT ,αI

αtT KT KI αI
V (αT ,KT )V (αI ,KI)

(2)

with V (α,K) =
√
αt (K2 + κK)α, κ ∈ [0, 1] is the regu-

larization parameter and KT , KI denote the N ×N kernel
matrices issued from {xTi }Ni=1 and {xIi }Ni=1. Finding the so-
lutions amounts to solving a generalized eigenvalue problem
and keeping the d highest eigenvalues together with their
associated eigenvectors, {αT,k}dk=1 and {αI,k}dk=1.

The projections pT of xT onto UT and pI of xI onto UI
are obtained as pTk = [KT (xT , xT1 ) . . .KT (xT , xTN )]αT,k and
respectively pIk = [KI(xI , xI1) . . .KI(xI , xIN )]αI,k, for k ∈
{1, .., d}. The bijection between projection spaces for pT and
pI defined by pairing {αT,k, αI,k}dk=1 makes possible to train
models on projections of data from one modality and apply
them to projections of data from the other modality. This
simple approach, used as baseline in Section 4, does not lead
to very good results. We instead suggest to complete any
unimodal data with data for the missing modality estimated
from an auxiliary bimodal dataset.

3.2 Finding relevant completion information
Let us consider an auxiliary dataset of m documents,

each having both visual and textual contents. Let A be
the set of pairs of KCCA projections of the visual and tex-
tual features of these documents on the common space, with
A = {(qT , qI)}, qT ∈ AT , qI ∈ AI , |A| = m. Dataset A
can be seen as a sample of pairs of “linked” points, each
concerning one modality. If the points are considered in the
original spaces of visual and textual features, these links may
be loose because part of the visual content of a document
is unrelated to its textual content and conversely. The links
should be stronger between the projections of the visual and
textual features of the documents on the common space.
The sample A provides information regarding the relations
between the two modalities. The more representative this
sample is, the more reliable is the information.

In practice, the auxiliary dataset A can be the training
data employed to obtain the KCCA space and denoted by
T in Section 4. However, we also consider and evaluate the
use of different datasets for building the common space and
for completion of the missing modality. This can have a
practical interest when, for example, the common space is
an open resource but the dataset employed to build it is
private or no longer available. Alternately, the dataset used
to obtain the common space may be too large and generic,
thus a smaller but “better focused” auxiliary dataset would
be preferable to better model the characteristics of a narrow
target domain.



  

Direct, ''naive'' choice, Eq.(3) Our proposal, Eq.(4)

Figure 2: Proposed vs. naive completion. Squares
and circles are text and resp. image projections.
Connected red squares and circles represent bimodal
documents in A. The green circle is the projection of
an image-only document. The naive approach seeks
neighbors in the missing modality directly, while our
proposal looks for them in the available modality.

To explain the completion process, let us consider a doc-
ument D with textual content only, described by a feature
vector xT that is projected as pT on the KCCA space. The
method described here (and in Sections 3.3 and 3.4) for a
textual-only document can be symmetrically applied to a
document having only visual content.

A direct but “naive” choice would be to complete pT with
a vector obtained from its µ nearest neighbors among the
points of the auxiliary dataset projected from the other modal-
ity (visual one here), NNµ

AI (pT ), because this is the missing
modality for D. This naive choice, considered in Section 4
as a second baseline, can be expressed as

Mc(p
T ) = {qIj } such that qIj ∈ NNµ

AI (pT ) (3)

To go further to such an approach, we need to consider
the properties of the common space. While it results from
an overall maximization of the relatedness between the two
modalities, the projections of the textual and of the visual
content of a same document on this space are not necessar-
ily very close. So, given the unimodal representation of a
document D, its direct nearest neighbors within the other
modality are not the best source for “filling in” the missing
modality of D. However, we expect that documents having
similar content according to one modality are likely to have
quite similar content according to the other modality.

So, we propose to find the auxiliary documents having
similar projected content with D in the available modality
for D (textual modality in this case) and to use the pro-
jections of the visual content of these documents to com-
plete pT . Formally, we define the set of contributors to the
“modality complement” of pT as

Mc(p
T ) = {qIj } such that

{
qTj ∈ NNµ

AT (pT )

(qTj , q
I
j ) ∈ A

(4)

where the condition (qTj , q
I
j ) ∈ A means that qTj and qIj are

the projections of two feature vectors extracted from the
same bimodal document. Note that

∣∣Mc(p
T )
∣∣ = µ.

3.3 Completion of the missing modality
Once the relevant complementary information regarding

the missing modality of a document D has been collected on
the common space as Mc(p

T ), we employ it for building a
representation for the missing modality of D.

Let p̂I be the representation of this missing modality (the

visual modality here) on the common space. A simple solu-
tion is to obtain p̂I as the centroid of the qIj in Mc(p

T ) =

{qIj }, i.e.

p̂I =
1

µ

∑
qIj∈Mc(pT )

qIj (5)

With several neighbors (µ > 1), the neighborhood of pT

is better sampled, making the representation more robust.
This is confirmed by experiments in Section 4.

The use of the centroid gives equal importance to all the
µ neighbors. However, the similarity between pT and each
point qTj ∈ NNµ

AT (pT ) should have an impact on the con-

struction of the representation p̂I of the missing modality.
If, within the available modality (textual modality here), pT

is closer to a textual point qTj1 than to qTj2 (with qTj1 , q
T
j2 ∈

NNµ

AT (pT )), then within the missing modality (visual modal-

ity here) the representation p̂I should be closer to the corre-
sponding visual point qIj1 than to qIj2 (with qIj1 , q

I
j2 ∈Mc(p

T )).

Consequently, we prefer to define the representation p̂I of the
missing modality for pT as a weighted centroid:

p̂I =
∑

qIj∈Mc(pT )

ωjq
I
j (6)

where ωj is the weight of qTj . Among the µ nearest neighbors

of pT considered, some may be very close to pT and others
comparatively far away. The weighting method should al-
low to take into account the close neighbors and ignore the
others, so the weight should quickly drop when the distance
increases. We consequently define the weights as:

ωj =
σ(pT , qTj )∑

qIj∈Mc(pT )

σ(pT , qTj )
(7)

with σ(pT , qTj ) = 1/(ε + ‖pT − qTj ‖). Here, ‖pT − qTj ‖ is

the Euclidean distance between pT and each qTj ∈ Mc(p
T ).

Also, ε is set to 10−16 to avoid marginal singularities for the
points that may actually belong to the auxiliary dataset.
The representative point into the missing modality is thus
built from the complementary points of the neighbors found
in the available modality and weighted according to the sim-
ilarity computed in the available modality as well.

To complete the missing modality of a document D with
the help of the auxiliary dataset A according to Eq. 6, it is
necessary to retrieve NNµ

AT (pT ), the µ nearest neighbors

of pT among the points in AT . If the auxiliary dataset
is relatively small (‖A‖ ≤ 106), exact exhaustive search is
fast enough. For larger A a sublinear approximate retrieval
method can be employed, e.g. [14, 18].

3.4 Aggregated representation construction
For any unimodal document D originally described by pT

alone, after building the representation p̂I of the missing
modality we aggregate pT and p̂I to obtain a unique de-
scriptor p of D. Various aggregation methods can be used
and several are compared in Section 4.

A widely employed method is the concatenation of the
components, in this case of pT and p̂I , resulting in a vector of
size 2d. This “unfolded” representation allows the classifier
to process the textual and visual components separately but
doubles the dimension of the description space.



Max-pooling consists in building a descriptor where the ith

element is the maximum between pTi and p̂Ii . This method
has already been used with good results for bag-of-visual-
words (BoVW) representations, see e.g. [3]. We also evaluate
max-pooling here, even though quantization is not employed
for pT and p̂I .

Averaging is also considered in Section 4. It obtains the
aggregated description as the element-wise average of the
two components pT and p̂I :

p = (pT + p̂I)/2 (8)

The approach presented in sections 3.2, 3.3 and 3.4 for a
textual-only document can be symmetrically employed for a
visual-only document.

In what follows, we call “Weighted Completion with Av-
eraging” (WCA) the proposed method with completion fol-
lowing Eq. (4), weights given by Eq. (7) and aggregation by
averaging.

4. EXPERIMENTS
We conduct several experiments on publicly available

datasets according to standard experimental protocols. Be-
yond the raw performance of the proposed WCA method
and its comparison to baselines, we study the influence of
the main components of WCA, namely the completion pro-
cess, the aggregation method and the relation between the
auxiliary data A and the T dataset used for KCCA. We
then compare the cross-modal classification results of WCA
to state-of-the-art results concerning cross-modal retrieval.
To better situate the performances attained by WCA on
cross-modal classification, we eventually compare them to
unimodal and bimodal classification results of the state of
the art.

4.1 Datasets, tasks and evaluation metrics
Pascal VOC07 [13]. This dataset includes 5, 011 training

and 4, 952 testing images collected from Flickr without their
original user tags. Each image has between 1 and 6 labels
from a set of 20 labels. Using Amazon Mechanical Turk,
several tags were also made available for each image [13].
Each image is associated to 1 to 75 tags for training (6.9
on average) and between 1 and 18 tags for testing (3.7 on
average).

NUS-WIDE [5]. This dataset contains 161, 789 train-
ing and 107, 859 testing Flickr images with both tags and
“ground truth” labels according to 81 concepts. The tag
list has 5,018 unique tags. In what follows, we denote the
full NUS-WIDE training set by NW160K. We also selected
two smaller subsets of NW160K, NW12K of 12K images and
NW23K of 23K images, both containing training images for
each of the 81 concepts.

NUS-WIDE 10K. We follow the protocol proposed in [7]
to collect this NUS-WIDE subset. Thus, only the following
ten concepts are chosen: animal, clouds, flowers, food, grass,
person, sky, toy, water and window. For each of these con-
cepts we select 1000 image-text pairs (800 for training, 100
for validation and 100 for testing) that only belong to this
single concept.

Cross-modal classification tasks. We consider here
two cross-modal classification tasks: Text-Image (T-I) and
Image-Text (I-T). In the Text-Image task, the classifiers
are trained with documents that have only textual con-
tent and then evaluated on documents in which only the

visual modality is available. Symmetrically, in the Image-
Text task, classifiers are trained with visual-only documents
and tested on textual-only documents.

Evaluation metric. The classification results are eval-
uated using mean Average Precision (mAP), following the
literature. Unless otherwise stated, the results shown cor-
respond to the mAP (in %) on the test set and parameters
are beforehand chosen on the validation set.

4.2 Experimental settings
To represent visual content we use the 4096-dimensional

features of the Oxford VGG-Net [21], L2-normalized. These
VGG features were shown to provide very good results in
several classification and retrieval tasks [20].

For texts (sets of tags or sentences) we employ
Word2Vec [16], an efficient method for learning vector repre-
sentations of words from large amounts of unstructured text.
In our experiments, textual features are 300-dimensional,
L2-normalized vectors. User-provided tags are quite noisy
for both Pascal VOC07 and NUS-WIDE datasets. For in-
stance, some tags are concatenations of words (e.g. sunse-
toverthesea), naturally absent from the Word2Vec vocab-
ulary. To improve the quality of textual features, we au-
tomatically separate the words (producing e.g. sunset over
the sea) before employing Word2Vec. For this, each tag is
matched to the tag dictionary and we retain only the valid
largest substrings. Following [16], a single vector is obtained
from several tags or a sentence associated to a given image,
by summing the vectors of the individual words.

In all the experiments we use the KCCA implementation
in [10] to build the common space, with a regularization
parameter κ = 0.1 and a Gaussian kernel with standard
deviation set to σ = 0.2. These are the default values, also
employed in other references [11].

For each category, an SVM classifier with a linear kernel
is trained, following a one-vs-all strategy. In practice, we
use the implementation proposed by Bottou [2].

4.3 Baselines
We compare WCA to two cross-modal classification base-

lines. The first, denoted by KCCA0, is simply the direct use
of the projections on the KCCA space. The common space
is learned from the dataset T and the two cross-modal tasks
are performed without any completion, both for training and
testing. More explicitly, classifiers are trained with the pro-
jections of one modality on the common KCCA space and
tested with projections of the other modality on this space.

The second baseline, denoted by KCCAnc (nc stands for
“naive completion”), employs the“naive”completion method
following Eq.(3). For either training or testing, the available
modality is projected on the KCCA space and this projec-
tion is then completed, according to Eq. (3), with a vector
obtained by the centroid method (Eq. 5) from its µ nearest
neighbors among the points in A projected from the other
modality. The averaging aggregation method of Eq. (8) is
employed.

4.4 Proposed completion vs. naive completion
vs. no completion

We first study the effectiveness of the completion mech-
anism for cross-modal classification on all the datasets. In
the Text-Image task, the classifiers are trained with docu-
ments (of the training set) from which the visual content



was removed and then evaluated on testing documents from
which the textual content was removed. Symmetrically, in
the Image-Text task, the classifiers are trained with image-
only documents and then evaluated on text-only documents.
Table 1 reports the results obtained on these tasks by WCA
and compares them to the KCCA0 and KCCAnc baselines.

On Pascal VOC07, we employ the training examples (5011
image-text pairs) both as training data T for learning the
KCCA space and as auxiliary data A for the modality com-
pletion stage. The best performances of the KCCA0 base-
line (78.98% for Text-Image and 59.88% for Image-Text) are
obtained with d = 4000 dimensions. For the sake of com-
parison, the results of the KCCAnc baseline and of WCA
are reported in Table 1 for this 4000-dimensional common
space. With µ = 15, WCA yields a better performance
than the two cross-modal classification baselines (+21.6%
and +17.4% on average compared to KCCA0 and KCCAnc

respectively).
On NUS-WIDE and NUS-WIDE 10K, the common space

is learnt from the data in NW23K. Subsequently, the 161,789
training and 107,859 testing examples of NUS-WIDE (re-
spectively the 8,000 training and 1,000 testing data of NUS-
WIDE 10k) are projected onto the common space to perform
cross-modal classification tasks. We use NW23K as auxil-
iary data A to complete unimodal data in the NUS-WIDE
benchmark. The 8,000 training plus 1,000 validation data
in NUS-WIDE 10K are employed together as auxiliary data
A for the NUS-WIDE 10K benchmark. In this experiment,
the number of neighbors µ used for completion is set to
10 both for the KCCAnc baseline and for WCA. The best
performances of KCCA0 and KCCAnc are obtained with
d = 10 for the two datasets. In this 10-dimensional common
space, WCA (with µ = 10) outperforms these two baselines
by reaching a mAP of 18.81% for the Text-Image task and
17.9% for the Image-Text task on the NUS-WIDE dataset,
and respectively 58.62% and 52.77% on NUS-WIDE 10K.
WCA further improves these results for higher values of d.
The WCA results in Table 1 are obtained with d = 1000.

4.5 Influence of the completion and aggrega-
tion methods

We study the influence of the different completion and
aggregation methods described in Section 3 on the per-
formance obtained on Pascal VOC07, with the same pa-
rameters as in Section 4.4. The training examples in Pas-
cal VOC07 were employed here both for KCCA learning
(d = 4000) and as auxiliary dataset A. WCA uses the
weighted centroid for completion, and aggregation by aver-
aging. “Weighted+Concatenation” combines the weighted
centroid for completion with aggregation by concatena-
tion. “Weighted+Max” also employs the weighted cen-
troid for completion but max-pooling for aggregation. The
“Centroid+Average” method uses the unweighted centroid
(Eq. 5) for completion and average-pooling for aggregation.
For each method, we report in Figure 3 the average of the
mAP values obtained for the Text-Image and Image-Text
tasks with µ ∈ {1, 5, 10, 15}.

Both WCA and“Centroid+Average”perform significantly
better than KCCAnc, showing the interest of the proposed
completion method of Eq. (4) in comparison to the naive
completion of Eq. (3). Averaging is consistently better than
max-pooling but the difference is small. Both averaging and
max-pooling are significantly better than concatenation.
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Figure 3: Results of different completion and ag-
gregation methods on Pascal VOC07, showing the
mAP(%) with respect to the number of neighbor
points µ used in the auxiliary dataset A. For each
method, the curves are the average of the Text-
Image and Image-Text tasks.

Performance increases with the number of neighbors µ for
the three aggregation methods if the weighted centroid is
employed, while with the unweighted centroid mAP slightly
diminishes beyond µ = 5. Indeed, for higher values of µ some
neighbors that contribute to the completion of the missing
modality are not near enough to be representative. With
the weighting function in Eq. (7), the near neighbors are
taken into account while those that are not ”near enough”
are ignored when present.

4.6 Impact of the auxiliary dataset A and of
the common space

One of our motivations is to develop a common representa-
tion space (using here KCCA) as a generic“resource”, from a
large and general bimodal dataset T , then address different
cross-modal classification problems with this resource. This
allows to avoid re-learning a common space for each prob-
lem, using a specific problem-related dataset. Projections
onto this space benefit from the generic text-image rela-
tions learned from T . A different, potentially more problem-
related dataset A can then be employed for representation
completion, taking thus into account problem-specific text-
image links in the aggregated data representation.

To explore this idea, we study in this section the impact
of using different datasets for obtaining the common KCCA
space (dataset T ) and for completing the unimodal repre-
sentations (dataset A) on Pascal VOC07.

Impact of the auxiliary dataset A. We fix the dataset
T employed for learning the KCCA space as the bimodal
training set of Pascal VOC07. The dimension of the common
space is set to d = 4000 because the baseline KCCA0 reaches
its best performance for this value. While in the previous
experiments the auxiliary dataset A was the same as T ,
here we successively evaluate as auxiliary dataset NW12K,
NW23K, NW160K and eventually T . The number µ of near-
est neighbors in A used for data completion is set to 5. The
cross-modal classification results on the Pascal VOC07 test
set are reported in Table 2.

The results show that the performance of WCA depends



Method
Pascal VOC07 NUS-WIDE NUS-WIDE 10K

T-I I-T Average T-I I-T Average T-I I-T Average

KCCA0 78.98 59.88 69.43 16.97 11.69 14.33 53.34 43.69 48.51
KCCAnc 75.07 68.77 71.92 14.87 11.61 13.24 46.41 39.28 42.85

WCA 85.49 83.38 84.44 37.80 34.02 35.91 79.53 79.15 79.34

Table 1: Cross-modal classification results (mAP%) on Pascal VOC07, NUS-WIDE and NUS-WIDE 10K.

Method A T-I I-T Average

KCCA0 - 78.98 59.88 69.43
KCCAnc VOC07 75.07 68.77 71.92

WCA

NW12K 65.06 57.30 61.18
NW23K 69.34 60.49 64.92
NW160K 73.77 64.47 69.12
VOC07 83.79 81.33 82.56

Table 2: Results on Pascal VOC07 with the com-
mon space obtained from the Pascal VOC07 train-
ing set. Different auxiliary datasets A are used for
WCA (with d = 4000, µ = 5).

Method T A T-I I-T Avg.

KCCA0 NW12K - 11.03 15.62 13.33

WCA NW12K
NW12K 21.10 37.12 29.11
NW23K 23.05 40.33 31.69
VOC07 59.92 75.48 67.70

KCCA0 NW23K - 14.93 19.99 17.46

WCA NW23K
NW12K 26.37 41.84 34.11
NW23K 29.32 43.11 36.22
VOC07 67.82 75.24 71.53

KCCA0 VOC07 - 11.68 11.82 11.75

WCA VOC07

NW12K 45.67 44.63 45.15
NW23K 50.31 45.76 48.04
NW160K 56.50 52.49 54.50
VOC07 80.70 76.23 78.47

Table 3: Results on Pascal VOC07 with different
datasets T to learn the common space and different
auxiliary datasets A (with d = 100, µ = 5) to connect
the modalities in the common space.

both on the size of the auxiliary dataset A and on the
“agreement” between A and the specific classification prob-
lem considered. As expected, with NW12K, NW23K and
NW160K as auxiliary datasets, the larger A, the better the
performance. Nevertheless, the mAP value obtained whenA
is the comparatively small (5011 bimodal documents) Pas-
cal VOC07 training dataset is 82.56%, significantly higher
than the one obtained when A is the much larger NW160K
dataset (only 69.1%). A first potential explanation is that
NUS-WIDE does not sample well the domain in the com-
mon space covered by Pascal VOC07. Consequently, given a
projection of a unimodal document in Pascal VOC07, its µ
nearest neighbors in NW12K, NW23K or NW160K are not
as close as the ones in the Pascal VOC07 training set, so
completion is less reliable with NUS-WIDE data.

A second potential explanation is that NUS-WIDE is not
so well represented by the projections on the common space
obtained with KCCA performed on the small Pascal VOC07
training set, because text-image relations may differ between

the two datasets. As yet another explanation, we note that
the NUS-WIDE data remains noisy even after separating
the concatenated tags (Section 4.2). This is shown by the
fact that the cross-modal classification results obtained on
NUS-WIDE are significantly lower than those attained on
Pascal VOC07, see Table 1.

Impact of the common space. In this experiment,
we still consider cross-modal classification tasks on Pascal
VOC07, but we vary both T and A. When T is NW12K or
NW23K, the baseline KCCA0 reaches its best performance
for d = 100. To support comparisons, we consider d =
100 and µ = 5 for the entire experiment. Table 3 reports
the cross-modal classification results on the Pascal VOC07
dataset for each common space learned from T ∈ {NW12K,
NW23K, VOC07} and A ∈ {NW12K, NW23K, VOC07}.
The results for KCCAnc were omitted from Table 3 because
they are very close to those of KCCA0.

As seen from Table 3, performance improves when the
data in T is problem-related rather than some other dataset
(Pascal VOC07 training set instead of NW23K). This is true
even though NW23K is more than four times larger than the
training set of Pascal VOC07. Also, with a same A, cross-
modal classification results improve for larger T sampled
from the NUS-WIDE data (NW23K instead of NW12K).
Using more data for obtaining the common space does im-
prove performance, even if this data (NW12K, NW23K) is
not related to the specific problem to be solved (in this case,
cross-modal classification on Pascal VOC07).

An interesting observation is that the results are signifi-
cantly better when T is NW23K (respectively NW12K) and
A is the training set of Pascal VOC07 than when T is the
training set of Pascal VOC07 and A is NW23K (respectively
NW12K). Using problem-related data as auxiliary dataset
A, i.e. for completing the unimodal representations, has
a much larger positive impact than using problem-related
data for obtaining the common space. Together with the
fact that the increase in performance from T = NW12K
to T = NW23K is relatively high, this makes us optimistic
about the possibility that, with a much larger but generic
T , results can improve beyond the level attained when T is
problem-related.

Another observation is that regardless of the dataset T
used for learning the common space, the highest perfor-
mance is always obtained with Pascal VOC07 training data
as auxiliary dataset A. The result obtained in Table 2 with
problem-related T is thus extended to the use of a T that
is not related to the problem. A smaller but “better fo-
cused” auxiliary dataset supports more reliable completion
of unimodal representations, with a significant positive im-
pact on cross-modal classification performance. This is also
important from a complexity perspective. Indeed, our com-
pletion mechanism requires nearest-neighbor retrieval from
the projections of the points in A, according to the available
modality. If good results can be obtained with a relatively



Classification type Method PascalVOC07 NUS-WIDE NUS-WIDE10K

Uni-modal
VGG [21] 86.10 50.38 78.53
W2V [16] 82.50 46.57 70.20

Bi-modal
VGG+W2V 86.16 50.87 82.89

LSMP [4] n/a 19.30 n/a

Cross-modal
WCA (T-I) 85.49 37.80 79.53
WCA (I-T) 83.38 34.02 79.15

Table 4: Comparison in terms of mAP(%) with unimodal and bimodal classification results.

Cross-modal
Method I-T T-I Avg.

Task

Retrieval
Bimodal AE [17, 7] 25.0 29.7 27.4

Corr-Full-AE [7] 33.1 37.9 35.5
Classification WCA 89.2 89.7 89.5

Table 5: mAP@50 for cross-modal retrieval and for
cross-modal classification on NUS-WIDE 10K.

small A then retrieval can be very fast and sublinear solu-
tions may not be needed.

4.7 Comparison to the state of the art
To our knowledge, cross-modal classification for text and

image data was not previously investigated. It is not directly
comparable, in principle, to the more classical unimodal and
bimodal classification scenarios where classifiers are trained
and tested with information of a same nature (same modal-
ity for the unimodal case, both modalities together for the
bimodal case). Since it is nevertheless useful to have an
idea of the relative levels of performance attained in these
different scenarios, we compare in Table 4 the performance
of WCA on cross-modal tasks to state-of-the-art results ob-
tained on unimodal and bimodal classification.

In unimodal classification, for the visual-only (denoted by
VGG) and respectively textual-only (W2V) case, classifiers
are trained and tested on VGG (resp. W2V) features alone.
For bimodal classification, in the VGG+W2V case of Ta-
ble 4, representations for both training and testing data are
produced by concatenating VGG and W2V features. The
good results obtained in unimodal classification, also very
close to those of bimodal classification with VGG+W2V,
show the high effectiveness of the features employed.

On Pascal VOC07, the results of both cross-modal clas-
sification tasks are lower but quite close to those of uni-
modal classification with VGG or bimodal classification with
VGG+W2V. On NUS-WIDE the difference is larger and we
suspect that this may be due to a comparatively weaker
link between the two modalities on this dataset. WCA pro-
vides slightly better results than unimodal classification and
weaker performance than bimodal classification on NUS-
WIDE 10K, we believe that the protocol put forward in [7]
selects data where the visual and textual modalities are bet-
ter related. The mechanism we proposed for completing the
unimodal features with complementary information in the
missing modality appears to have a very significant contri-
bution in bringing the performance of cross-modal classifica-
tion closer to the state-of-the-art in unimodal and bimodal
classification. We also compare WCA to [4] that reported
previous state-of-the-art results for bimodal classification on
NUS-WIDE. WCA significantly outperforms this method.

Cross-modal retrieval is another well-known task and it

may be interesting to see how the cross-modal classfication
approach proposed here compares to this task. For cross-
modal retrieval, the query is an item described along one
modality and the ranked answers belong to the other modal-
ity. In [17, 7], the cross-modal retrieval results reported on
NUS-WIDE 10K employed the available concepts (our class
labels) as ground-truth for computing the mAP@50. For our
cross-modal classification, the“query”is a decision boundary
learned in one modality and the ranked answers are items
described along the other modality. Table 5 shows both the
mAP@50 results of cross-modal retrieval and of cross-modal
classification on NUS-WIDE 10K. Note that [17, 7] employed
“classical” low or medium-dimensional features such as color
histograms or bag of SIFT descriptors for images and bag of
words for text, while we made use of VGG and W2V. The
reader should however keep in mind that these two tasks are
different, so Table 5 should be interpreted with care.

5. CONCLUSION
We put forward an approach that addresses cross-modal

classification for visual and textual data, i.e. where training
is performed with data from one modality and testing with
data from the other modality. In line with recent literature
on cross-modal retrieval, this approach relies on the develop-
ment of a common latent representation space. The novelty
of our approach lies in the use of an auxiliary dataset to sys-
tematically complete unimodal data, both for training and
testing, resulting in more comprehensive bimodal represen-
tations. The completion method we propose goes beyond a
more direct completion solution that we also mention.

We provide an in-depth study of several aspects of our
approach and compare it to recent work in the literature.
It outperforms two cross-modal classification baselines and
provides interesting results compared to recent cross-modal
retrievalmethods. Furthermore, the performance level we
attain on cross-modal classification also compares well to
state-of-the-art unimodal and bimodal classification results.
Such a performance level makes our approach to cross-modal
classification a convincing choice for real applications, such
as learning classifiers from an existing large amount of an-
notated textual data and applying them to visual content.

We believe that our representation completion and aggre-
gation approach is not limited to latent spaces obtained by
KCCA but can be employed with alternative methods. We
intend to investigate this direction in future work.
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