A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Pré-Publication, Document De Travail Année : 2008

A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation

Résumé

An efficient and fully computable a posteriori error bound is derived for the discretization of the Laplace equation by the discrete duality finite volume scheme on very general twodimensional meshes. The main ingredients are the equivalence of this method with a finite element like scheme and tools from the finite element framework. Numerical tests are performed with a stiff solution on highly nonconforming locally refined meshes and with a singular solution on triangular meshes.
Fichier principal
Vignette du fichier
aposteriori_ddfv.pdf (331.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-00320486 , version 1 (11-09-2008)
cea-00320486 , version 2 (04-06-2009)

Identifiants

  • HAL Id : cea-00320486 , version 1

Citer

Pascal Omnes, Yohan Penel, Yann Rosenbaum. A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation. 2008. ⟨cea-00320486v1⟩
232 Consultations
640 Téléchargements

Partager

More