A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2009

A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation

Résumé

An efficient and fully computable a posteriori error bound is derived for the discrete duality finite volume discretization of the Laplace equation on very general twodimensional meshes. The main ingredients are the equivalence of this method with a finite element like scheme and tools from the finite element framework. Numerical tests are performed with a stiff solution on highly nonconforming locally refined meshes and with a singular solution on triangular meshes.
Fichier principal
Vignette du fichier
aposteriori_ddfv_version2.pdf (310.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

cea-00320486 , version 1 (11-09-2008)
cea-00320486 , version 2 (04-06-2009)

Identifiants

Citer

Pascal Omnes, Yohan Penel, Yann Rosenbaum. A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation. SIAM Journal on Numerical Analysis, 2009, 47 (4), pp.2782--2807. ⟨10.1137/080735047⟩. ⟨cea-00320486v2⟩
232 Consultations
640 Téléchargements

Altmetric

Partager

More