

A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation

Pascal Omnes, Yohan Penel, Yann Rosenbaum

▶ To cite this version:

Pascal Omnes, Yohan Penel, Yann Rosenbaum. A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation. 2008. cea-00320486v1

HAL Id: cea-00320486 https://cea.hal.science/cea-00320486v1

Preprint submitted on 11 Sep 2008 (v1), last revised 4 Jun 2009 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A POSTERIORI ERROR ESTIMATION FOR THE DISCRETE DUALITY FINITE VOLUME DISCRETIZATION OF THE LAPLACE **EQUATION**

PASCAL OMNES†‡, YOHAN PENEL†‡, AND YANN ROSENBAUM†‡

Abstract. An efficient and fully computable a posteriori error bound is derived for the discretization of the Laplace equation by the discrete duality finite volume scheme on very general twodimensional meshes. The main ingredients are the equivalence of this method with a finite element like scheme and tools from the finite element framework. Numerical tests are performed with a stiff solution on highly nonconforming locally refined meshes and with a singular solution on triangular meshes.

Key words. a posteriori error estimation, finite volume, discrete duality, nonconforming meshes

AMS subject classifications. 65N15, 65N30

1. Introduction. Let Ω be a two dimensional polygonal domain with boundary Γ such that $\Gamma = \Gamma_D \cup \Gamma_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$. We are interested in the a posteriori error estimation between the exact solution $\hat{\phi} \in H^1(\Omega)$, of the following problem

$$(1.1) -\Delta \hat{\phi} = f \text{ in } \Omega$$

(1.2)
$$\hat{\phi} = \phi_d \text{ on } \Gamma_D$$
(1.3)
$$\nabla \hat{\phi} \cdot \mathbf{n} = g \text{ on } \Gamma_N$$

(1.3)
$$\nabla \hat{\phi} \cdot \mathbf{n} = g \text{ on } \Gamma_N$$

and its numerical approximation by the finite volume method (FVM) described in [13] and recalled in section 3. In this introduction, let us only mention that the unknowns of this scheme are located both at the centers and at the vertices of the mesh. Equation (1.1) is then integrated both on the primal mesh, and on a dual mesh, whose cells are centered on the vertices of the primal mesh. Finally, fluxes are computed through the reconstruction of gradients on the so-called "diamond-cells", which are quadrilateral cells centered on the edges of the mesh. It has been shown that this finite volume method may be written under an equivalent discrete symmetric positive definite variational formulation, and has been named "discrete duality finite volume" (DDFV) method since it can be interpreted in terms of discrete differential gradient and divergence operators which are linked by a discrete Green formula. The main advantage of this scheme is that it may be used on fairly arbitrary meshes with possibly distorted [17, 18] or highly nonconforming primal cells [13]. Another useful feature of this scheme is the reconstruction of both components of the gradients (and not only of its normal component with respect to the cell edges), which makes it easy to use for anisotropic or non-linear (p-Laplacian type) diffusion problems (see, for example, [4, 17, 18]). An extension of this scheme to div-curl problems as well as further definitions and properties of discrete differential operators have been presented in [12]. A priori analysis have been given in [4, 13]. In the linear case, when the solution of (1.1) to (1.3) belongs to $H^2(\Omega)$, it has been proved in [13] that the numerical approximation obtained by the DDFV method tends to the exact solution with the optimal order h

[†]CEA, DEN, DM2S-SFME, F-91191 Gif-sur-Yvette Cedex, France. (pascal.omnes@cea.fr yohan.penel@cea.fr)

[‡]Université Paris 13, LAGA, CNRS UMR 7539, Institut Galilée, 99 Avenue J.-B. Clément, F-93430 Villetaneuse, France.

in the energy norm. For less regular solutions in $H^{1+s}(\Omega)$, with s < 1 a convergence with order h^s has been observed in [12]; this motivates the study of a posteriori error estimators that could efficiently drive an adaptive refinement strategy.

For the type of partial differential equation given by (1.1) to (1.3), a posteriori error estimations for conforming Lagrange finite element methods (FEM) are now very common. The reader is referred to, e.g., [2, 5, 27]. For these methods, there are several types of estimators, which are detailed in the above references. In the residual based class of estimators, the main terms are inter-element jumps of the normal components of the gradients of the computed solution, weighted by constants whose explicit computation was performed in [7] and [28]. Efficiencies of the estimators obtained in [7] vary, according to the problems, between 30 and 70, and between 1.5 and 3.5 if one numerically evaluates eigenvalues of some vertex centered local problems, as reported in [8]. References for non-conforming FEM may be found in [3] and for mixed FEM in [29].

The case of cell-centered FVM has been less studied, on the one hand because of their more recent use for elliptic problems, and, on the other hand, because they generally lack a discrete variational formulation. For the basic "four point" scheme on so-called "admissible" triangular meshes (see [14, 16]), A. Agouzal and F. Oudin [1] have used the connection of this scheme with mixed finite element schemes to derive an a posteriori estimator for the L^2 norm of the error; this estimator is not an upper bound for the error, but is asymptotically exact under mild hypothesis. A second estimator for this scheme has been provided by S. Nicaise in [20]. This estimator is shown to be equivalent to the (broken) energy norm of the difference between the exact solution and an elementwise second order polynomial (globally discontinuous) reconstructed numerical solution. Then, in [21], S. Nicaise extends his ideas to the so-called "diamond-cell" FVM (as described in [10]). S. Nicaise proposes an a posteriori error estimator which may be used if the cells of the mesh are triangles or rectangles (or tetrahedrons in dimension three). This estimator is completely computable (no unknown constant) and its efficiency is around 7 for the tests performed in [21]. Finally, S. Nicaise has extended his work to diffusion-convection-reaction equations in [22]. More recently, M. Vohralík [30] has also proposed a fully computable a posteriori error estimator for numerical approximations by cell-centered FVM of diffusion-convection-reaction equations on simplicial meshes. The main improvement over [21, 22] is the asymptotic exactness of the error bound which, like in [21], measures the energy norm of the difference between the exact solution and a reconstructed, globally discontinuous, elementwise second order polynomial numerical solution. Note that in [22] the reconstructed numerical solution is globally continuous and may involve higher order polynomials on each element.

Since the computations of the estimators in [21, 30] only require fluxes on the edges and values of the unknowns at the centers of the primal cells (quantities which are usually the output of FVM), we may apply them to the DDFV method, provided the primal mesh respects the above conditions (although generalizations of [30] to more general meshes are announced in [32]). Thus, up to now, we may not apply these techniques to meshes as general as those we employ with the DDFV scheme, like in particular the non-conforming meshes of section 7.

Let us finally mention some related results in the context of vertex-centered finite volume (element) methods [6, 9, 19, 23, 24, 25].

In the present work, we use the equivalent discrete variational formulation of the DDFV method and tools developed in the FEM framework to obtain a fully computable a posteriori bound for the L^2 norm of the error in the gradient computed by the DDFV scheme: hence, no kind of postprocessing or solution reconstruction like in [21, 30] is needed in our approach. This error estimator is efficient under classical geometrical constraints on a subtriangulation of the primal mesh. The main two difficulties encountered are, on the one hand, that the basis functions on which the discrete variational formulation rely are non-conforming, and, on the other hand, that the DDFV scheme uses two dual meshes. The first difficulty is solved thanks to an argument which is now classical as soon as the discrete solution does not belong to $H^1(\Omega)$ (see [3, 11, 21]): a Helmholtz-Hodge decomposition of the error is performed, involving a conforming and a nonconforming part. The conforming part of the error is treated rather classically and involves the normal jumps of the gradients through neighboring diamond-cells. The nonconforming part of the error is treated thanks to the discrete orthogonality property which links the discrete gradients and curls, as shown in [12], and involves the tangential jumps of the gradients through neighboring diamond-cells. The second difficulty results in the total estimator being a sum of local estimators on the primal cells and of local estimators on the dual cells, before we distribute each local dual estimator on the primal cells which intersect the considered dual cell. Along all the computations, we have tried to obtain the best possible bounds, with the objective that the resulting estimator be fully computable, and that the efficiency be as good as possible. The constants which are involved in the computations are explicitly evaluated thanks to the expressions found in [7, 21, 28], and there is a free parameter in the bounds, with respect to which the estimators are numerically minimized. The resulting tests show that the efficiency of the proposed estimator varies most of the time between 5 and 10.

The remainder of this article is organized as follows. Section 2 sets some notations and definitions related to the meshes, to discrete differential operators and to discrete functions. In section 3, a slightly modified version of the DDFV scheme is presented and its equivalent discrete variational formulation is recalled. In section 4, a representation of the error is elaborated. This is used in section 5 to find a computable upper bound of this error. In section 6, the local efficiency of the error estimators is verified. Section 7 is devoted to numerical tests with a regular but stiff solution and with a singular solution. Conclusion are drawn in section 8.

2. Notations and definitions. The following notations are summarized in Fig. 2.1 and 2.2. Let the domain Ω be covered by a primal mesh with polygonal cells denoted by T_i , with $i \in [1, I]$. With any T_i , we associate a point G_i located in the interior of T_i . This point is not necessarily the centroid of T_i . With any vertex S_k , with $k \in [1, K]$, we associate a dual cell P_k by joining points G_i associated with the primal cells surrounding S_k to the midpoints of the edges of which S_k is a node.

REMARK 2.1. This construction of the dual cells slightly differs from that given in [12, 13]. The present construction ensures that a dual cell P_k is star-shaped with respect to the associated node S_k . It also ensures that when $T_i \cap P_k \neq \emptyset$, the segment $[G_iS_k]$ belongs to $T_i \cap P_k$. These two facts will be essential in the application of the Poincaré type and trace inequalities used to obtain the a posteriori bound in section 5. Finally, this construction also ensures that the dual cells form a partition of Ω , which will also be essential in the derivation of the a posteriori bound.

With any primal edge A_j with $j \in [1, J]$, we associate a so-called diamond-cell D_j obtained by joining the vertices $S_{k_1(j)}$ and $S_{k_2(j)}$ of A_j to the points $G_{i_1(j)}$ and $G_{i_2(j)}$ associated with the primal cells that share A_j as a part of their boundaries. When A_j is a boundary edge (there are J^{Γ} such edges), the associated diamond-cell is a flat

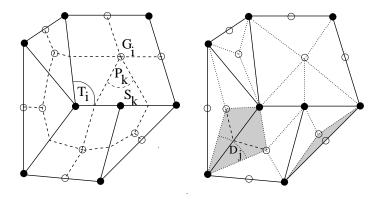


Fig. 2.1. A nonconforming primal mesh and its associated dual mesh (left) and diamond-mesh (right).

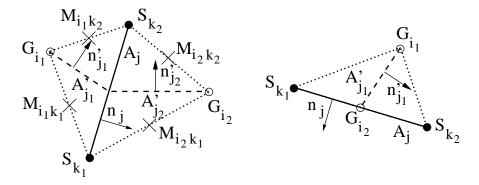


Fig. 2.2. Notations for an inner diamond-cell (left) and a boundary diamond-cell (right).

quadrilateral (i.e. a triangle) and we denote by $G_{i_2(j)}$ the midpoint of A_j (thus, there are J^{Γ} such additional points G_i). The unit normal vector to A_j is \mathbf{n}_j and points from $G_{i_1(j)}$ to $G_{i_2(j)}$. We denote by A'_{j1} (resp. A'_{j2}) the segment joining $G_{i_1(j)}$ (resp. $G_{i_2(j)}$) and the midpoint of A_j . Its associated unit normal vector, pointing from $S_{k_1(j)}$ to $S_{k_2(j)}$, is denoted by \mathbf{n}'_{j1} (resp. \mathbf{n}'_{j2}). In the case of a boundary diamond-cell, A'_{j2} reduces to $\{G_{i_2(j)}\}$ and does not play any role. Finally, for any diamond-cell D_j , we shall denote by $M_{i_{\alpha}k_{\beta}}$ the midpoint of $[G_{i_{\alpha}(j)}S_{k_{\beta}(j)}]$, with $(\alpha,\beta) \in \{1;2\}^2$. With \mathbf{n}_j , \mathbf{n}'_{j1} and \mathbf{n}'_{j2} , we associate orthogonal unit vectors $\boldsymbol{\tau}_j$, $\boldsymbol{\tau}'_{j1}$ and $\boldsymbol{\tau}'_{j2}$, such that the corresponding orthonormal bases are positively oriented. For any primal T_i such that $A_j \subset \partial T_i$, we shall define $\mathbf{n}_{ji} := \mathbf{n}_j$ if $i = i_1(j)$ and $\mathbf{n}_{ji} := -\mathbf{n}_j$ if $i = i_2(j)$, so that \mathbf{n}_{ji} is always exterior to T_i . With \mathbf{n}_{ji} , we associate $\boldsymbol{\tau}_{ji}$ such that $(\mathbf{n}_{ji}, \boldsymbol{\tau}_{ji})$ is positively oriented. Similarly, when A'_{j1} and A'_{j2} belong to ∂P_k , we define $(\mathbf{n}'_{jk1}, \boldsymbol{\tau}'_{jk1})$ and $(\mathbf{n}'_{jk2}, \boldsymbol{\tau}'_{jk2})$ so that \mathbf{n}'_{jk1} and \mathbf{n}'_{jk2} are orthogonal to A'_{j1} and A'_{j2} and exterior to P_k .

The boundary Γ_N is supposed to be simply connected. This hypothesis is only performed for the sake of simplicity and is in no matter restrictive. By a slight abuse of notations, we shall write $k \in \stackrel{\circ}{\Gamma}_D$ (resp. $\bar{\Gamma}_D$, $\stackrel{\circ}{\Gamma}_N$ and $\bar{\Gamma}_N$) if the vertex S_k belongs to the interior of Γ_D , relatively to Γ (resp. to the closure of Γ_D , to the interior of Γ_N and to the closure of Γ_N). Identically, we shall write $i \in \Gamma_D$ (resp. $i \in \Gamma_N$, $j \in \Gamma_D$ and $j \in \Gamma_N$) if $G_i \in \Gamma_D$ (resp. $G_i \in \Gamma_N$, $A_j \subset \Gamma_D$ and $A_j \subset \Gamma_N$). We shall denote by

 K^{Γ_D} the number of indices $k \in \bar{\Gamma}_D$, and by J^{Γ_N} (resp. J^{Γ_D}) the number of edges A_i and points G_i in Γ_N (resp. in Γ_D).

In the definition of the DDFV scheme, we shall associate discrete scalar unknowns to the points G_i and S_k and discrete two dimensional vector fields to the diamond-cells. This leads us to the following definitions.

DEFINITION 2.2. Let $\phi = (\phi_i^T, \phi_k^P)$ and $\psi = (\psi_i^T, \psi_k^P)$ be in $\mathbb{R}^I \times \mathbb{R}^K$. Let $\mathbf{u} = (\mathbf{u}_j)$ and $\mathbf{v} = (\mathbf{v}_j)$ be in $(\mathbb{R}^2)^J$. We define the following scalar products

(2.1)
$$(\phi, \psi)_{T,P} := \frac{1}{2} \left(\sum_{i \in [1,I]} |T_i| \, \phi_i^T \, \psi_i^T + \sum_{k \in [1,K]} |P_k| \, \phi_k^P \, \psi_k^P \right),$$

(2.2)
$$(\mathbf{u}, \mathbf{v})_D := \sum_{j \in [1, J]} |D_j| \, \mathbf{u}_j \cdot \mathbf{v}_j.$$

We shall also need the following trace operator and boundary scalar product

DEFINITION 2.3. Let $\phi = (\phi_i^T, \phi_k^P)$ be in $\mathbb{R}^{I+J^\Gamma} \times \mathbb{R}^K$. For any boundary edge A_j , with the notations of Fig. 2.2, we define $\tilde{\phi}_j$ as the trace of ϕ over A_j by

(2.3)
$$\tilde{\phi}_j = \frac{1}{4} \left(\phi_{k_1(j)}^P + 2\phi_{i_2(j)}^T + \phi_{k_2(j)}^P \right).$$

Let $\phi = (\phi_i^T, \phi_k^P)$ be in $\mathbb{R}^{I+J^\Gamma} \times \mathbb{R}^K$ and let $w = (w_i)$ be defined (at least) on the boundary Γ_D , or on Γ_N or on Γ . We define the following boundary scalar products

$$(2.4) (w, \tilde{\phi})_{\Gamma_D, h} = \sum_{j \in \Gamma_D} |A_j| w_j \, \tilde{\phi}_j \quad , \quad (w, \tilde{\phi})_{\Gamma_N, h} = \sum_{j \in \Gamma_N} |A_j| w_j \, \tilde{\phi}_j,$$
$$(w, \tilde{\phi})_{\Gamma, h} := (w, \tilde{\phi})_{\Gamma_D, h} + (w, \tilde{\phi})_{\Gamma_N, h}.$$

We recall here the discrete differential operators which have been constructed on fairly general two dimensional meshes, and some of their properties. For more details and for the proofs, see [12, 13].

DEFINITION 2.4. Let $\mathbf{u} = (\mathbf{u}_i)$ be in $(\mathbb{R}^2)^J$. We define its divergence and (scalar) curl on the primal and dual cells by

$$\begin{split} \left(\nabla_{h}^{T}\cdot\mathbf{u}\right)_{i} &:= \frac{1}{|T_{i}|}\sum_{j\in\partial T_{i}}|A_{j}|\mathbf{u}_{j}\cdot\mathbf{n}_{ji},\\ \left(\nabla_{h}^{P}\cdot\mathbf{u}\right)_{k} &:= \frac{1}{|P_{k}|}\left(\sum_{j\in\partial P_{k}}\left(|A'_{j1}|\mathbf{u}_{j}\cdot\mathbf{n}'_{j1k} + |A'_{j2}|\mathbf{u}_{j}\cdot\mathbf{n}'_{j2k}\right) + \sum_{j\in\partial P_{k}\cap\Gamma}\frac{|A_{j}|}{2}\mathbf{u}_{j}\cdot\mathbf{n}_{j}\right),\\ \left(\nabla_{h}^{T}\times\mathbf{u}\right)_{i} &:= \frac{1}{|T_{i}|}\sum_{j\in\partial T_{i}}|A_{j}|\mathbf{u}_{j}\cdot\boldsymbol{\tau}_{ji},\\ \left(\nabla_{h}^{P}\times\mathbf{u}\right)_{k} &:= \frac{1}{|P_{k}|}\left(\sum_{j\in\partial P_{k}}\left(|A'_{j1}|\mathbf{u}_{j}\cdot\boldsymbol{\tau}'_{j1k} + |A'_{j2}|\mathbf{u}_{j}\cdot\boldsymbol{\tau}'_{j2k}\right) + \sum_{j\in\partial P_{k}\cap\Gamma}\frac{|A_{j}|}{2}\mathbf{u}_{j}\cdot\boldsymbol{\tau}_{j}\right). \end{split}$$

We stress that $\partial P_k \cap \Gamma$ is non-empty if and only if $S_k \in \Gamma$. DEFINITION 2.5. Let $\phi = (\phi_i^T, \phi_k^P)$ be in $\mathbb{R}^{I+J^\Gamma} \times \mathbb{R}$; its discrete gradient $\nabla_h^D \phi$ and (vector) curl $\nabla_h^D \times \phi$ are defined by their values on the cells D_j by

$$(\nabla_h^D \phi)_j := \frac{1}{2|D_j|} \left\{ \left[\phi_{k_2}^P - \phi_{k_1}^P \right] (|A'_{j1}| \mathbf{n}'_{j1} + |A'_{j2}| \mathbf{n}'_{j2}) + \left[\phi_{i_2}^T - \phi_{i_1}^T \right] |A_j| \mathbf{n}_j \right\},\,$$

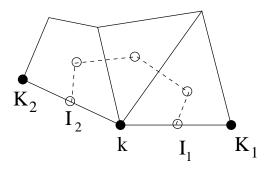


Fig. 2.3. Notations for a boundary dual cell in formula (2.11)

$$(\nabla_h^D \times \phi)_j := -\frac{1}{2 \, |D_j|} \left\{ \left[\phi_{k_2}^P - \phi_{k_1}^P \right] (|A_{j1}'| \boldsymbol{\tau}_{j1}' + |A_{j2}'| \boldsymbol{\tau}_{j2}') + \left[\phi_{i_2}^T - \phi_{i_1}^T \right] |A_j| \boldsymbol{\tau}_j \right\}.$$

We recall that the formulae in Def. 2.5 are exact for affine functions.

PROPOSITION 2.6. For $\mathbf{u} \in (\mathbb{R}^2)^J$ and $\phi = (\phi^T, \phi^P) \in \mathbb{R}^{I+J^\Gamma} \times \mathbb{R}^K$, the following discrete Green formulae hold:

(2.5)
$$(\mathbf{u}, \nabla_h^D \phi)_D = -(\nabla_h^{T,P} \cdot \mathbf{u}, \phi)_{T,P} + (\mathbf{u} \cdot \mathbf{n}, \tilde{\phi})_{\Gamma,h}$$

(2.6)
$$(\mathbf{u}, \nabla_h^D \times \phi)_D = (\nabla_h^{T,P} \times \mathbf{u}, \phi)_{T,P} + (\mathbf{u} \cdot \boldsymbol{\tau}, \tilde{\phi})_{\Gamma,h}.$$

Proposition 2.7. For all $\phi = (\phi_i^T, \phi_k^P) \in \mathbb{R}^{I+J^{\Gamma}} \times \mathbb{R}$, there holds

$$(2.7) \qquad (\nabla_h^T \cdot (\nabla_h^D \times \phi))_i = 0 \ \forall i \in [1, I],$$

(2.8)
$$\left(\nabla_h^P \cdot (\nabla_h^D \times \phi) \right)_k = 0 \ \forall k \notin \Gamma \,,$$

(2.9)
$$\left(\nabla_h^T \times (\nabla_h^D \phi)\right)_i = 0 \ \forall i \in [1, I],$$

(2.10)
$$(\nabla_h^P \times (\nabla_h^D \phi))_k = 0 \ \forall k \notin \Gamma.$$

In addition, for $k \in \Gamma$, the following equality holds (see Fig. 2.3 for the notations)

$$(2.11) \qquad \left(\nabla_{h}^{P} \times (\nabla_{h}^{D} \phi)\right)_{k} = \frac{1}{|P_{k}|} \left[\left(\phi_{I_{2}}^{T} - \phi_{I_{1}}^{T}\right) + \frac{1}{2} \left(\phi_{K_{1}}^{P} - \phi_{K_{2}}^{P}\right) \right].$$

Definition 2.8. With any $\phi = (\phi_i^T, \phi_k^P) \in \mathbb{R}^{I+J^{\Gamma}} \times \mathbb{R}$, we associate the function ϕ_h defined by

$$\begin{split} (\phi_h)_{|D_j} &\in P^1(D_j), \ \forall j \in [1, J], \\ \phi_h(M_{i_\alpha(j) \, k_\beta(j)}) &= \frac{1}{2} (\phi_{i_\alpha(j)}^T + \phi_{k_\beta(j)}^P), \ \forall j \in [1, J], \ \forall (\alpha \, \beta) \in \{1; 2\}^2 \, . \end{split}$$

Remark 2.9. The definition of a $P^1(D_j)$ function by its values in four different points is in general not possible. However, in the present case, ϕ_h verifies

$$\phi_h(M_{i_1k_1}) + \phi_h(M_{i_2k_2}) = \phi_h(M_{i_1k_2}) + \phi_h(M_{i_2k_1})$$

and the quadrilateral $(M_{i_1k_1}M_{i_1k_2}M_{i_2k_2}M_{i_2k_1})$ is a parallelogram, which ensures existence and uniqueness of the function ϕ_h . Moreover, the function ϕ_h is only continuous at the midpoints of the diamond-cell edges.

Proposition 2.10. There results from elementary computations that

$$(2.12) \nabla(\phi_h)_{|D_i} = (\nabla_h^D \phi)_j,$$

(2.13)
$$\nabla \times (\phi_h)_{|D_i} = (\nabla_h^D \times \phi)_j.$$

DEFINITION 2.11. In the sequel of the present work, we shall note by $\nabla_h \phi_h$ the $(L^2(\Omega))^2$ function whose restriction to each cell D_j is equal to $\nabla(\phi_h)_{|D_j} = (\nabla_h^D \phi)_j$.

3. The finite volume scheme on general meshes. We recall the finite volume scheme used for the numerical approximation of Eq. (1.1)-(1.2)-(1.3). This scheme is constructed on the basis of the discrete differential operators defined in section 2.

$$(3.1) -(\nabla_h^T \cdot (\nabla_h^D \phi))_i = (\bar{f})_i^T \ \forall i \in [1, I],$$

$$(3.2) -(\nabla_h^P \cdot (\nabla_h^D \phi))_k = (\bar{f})_k^P \ \forall k \notin \bar{\Gamma}_D,$$

in which $(\bar{f})_i^T$ and $(\bar{f})_k^P$ are the mean values of f over T_i and P_k , respectively:

(3.3)
$$(\bar{f})_i^T = \frac{1}{|T_i|} \int_{T_i} f(\mathbf{x}) d\mathbf{x} \text{ and } (\bar{f})_k^P = \frac{1}{|P_k|} \int_{P_k} f(\mathbf{x}) d\mathbf{x}.$$

Dirichlet boundary conditions are discretized by

(3.4)
$$\phi_k^P = \phi_d(S_k), \forall k \in \bar{\Gamma}_D \text{ and } \phi_i^T = \frac{1}{2} (\phi_{k_1}^P + \phi_{k_2}^P), \forall i \in \Gamma_D,$$

where in the second definition, it is understood that $G_i \in \Gamma_D$ is the midpoint of $[S_{k_1}S_{k_2}] \subset \Gamma_D$. Note that there is a slight modification in the last boundary conditions in (3.4) with respect to those proposed in [13]. The reason for this will appear in section 4. Neumann boundary conditions are discretized by

$$(3.5) (\nabla_h^D \phi)_j \cdot \mathbf{n}_j = \bar{g}_j , \ \forall j \in \Gamma_N,$$

where \bar{g}_i is the mean value of g over the corresponding segment A_i

(3.6)
$$\bar{g}_j = \frac{1}{|A_j|} \int_{A_j} g(\sigma) d\sigma.$$

LEMMA 3.1. The scheme (3.1), (3.2), (3.4), (3.5) has a unique solution. Proof. Let us consider $\psi = (\psi_i^T, \psi_k^P)$ such that $\psi_k^P = 0$ for all k in $\bar{\Gamma}_D$ and $\psi_i^T = 0$ for all i in Γ_D . Then, there holds

$$(3.7) \qquad \qquad -(\nabla_h^T \cdot (\nabla_h^D \phi))_i \, \psi_i^T = (\bar{f})_i^T \, \psi_i^T \;, \; \forall i \in [1, I],$$

(3.8)
$$-(\nabla_h^P \cdot (\nabla_h^D \phi))_k \psi_k^P = (\bar{f})_k^P \psi_k^P, \ \forall k \in [1, K].$$

Eq. (3.7) is trivially obtained by multiplying Eq. (3.1) by ψ_i^T . In the same way, Eq. (3.8) is obtained, for $k \notin \bar{\Gamma}_D$ by multiplying (3.2) by ψ_k^P . On the other hand, for $k \in \bar{\Gamma}_D$, Eq. (3.8) still holds true because ψ_k^P vanishes. Multiplying (3.7) by $|T_i|$ and (3.8) by $|P_k|$ and summing over all i and all k, we obtain

$$-(\nabla_h^{T,P} \cdot (\nabla_h^D \phi), \psi)_{T,P} = (\bar{f}, \psi)_{T,P}.$$

The discrete Green formula (2.5) allows to write

(3.9)
$$(\nabla_h^D \phi, \nabla_h^D \psi)_D - (\nabla_h^D \phi \cdot \mathbf{n}, \tilde{\psi})_{\Gamma,h} = (\bar{f}, \psi)_{T,P}.$$

The fact that ψ vanishes over $\bar{\Gamma}_D$ implies that $\tilde{\psi}_j$ vanishes for all $j \in \Gamma_D$; on the other hand, taking (3.5) into account, we may transform (3.9) into

$$(3.10) \qquad (\nabla_h^D \phi, \nabla_h^D \psi)_D = (\bar{f}, \psi)_{T,P} + (\bar{g}, \tilde{\psi})_{\Gamma_N,h}.$$

If the data (f, g, ϕ_d) vanish, then the right-hand side of (3.10) also vanishes, and we may choose $\psi = \phi$ because Eq. (3.4) imply that ϕ vanishes over $\bar{\Gamma}_D$. Then, we obtain $(\nabla_h^D \phi)_j = 0$ for all j, which implies that there exists two constants (c^T, c^P) such that $\phi_i^T = c^T$ for all i and $\phi_k^P = c^P$ for all k. Applying the Dirichlet boundary conditions (which vanish because the data vanish), we obtain that ϕ itself vanishes, which proves injectivity. It suffices then that the linear system be a square system in order to obtain existence and uniqueness of a solution; there are $I + K + J^\Gamma$ unknowns, while Eq. (3.1) provides I equations, Eq. (3.2) provides $K^{\Gamma_D} + J^{\Gamma_D}$ equations and Eq. (3.5) provides J^{Γ_N} equations, which means a total of $I + K + J^\Gamma$ equations. \square

PROPOSITION 3.2. Let $\phi = (\phi_i^T, \phi_k^P)$ be the solution of the scheme (3.1)–(3.6). Let $\psi = (\psi_i^T, \psi_k^P)$ be such that $\psi_k^P = 0$, $\forall k \in \bar{\Gamma}_D$ and $\psi_i^T = 0$, $\forall i \in \Gamma_D$. Let ϕ_h and ψ_h be the functions associated to ϕ and ψ by Def. 2.8. Let us set in addition

(3.11)
$$\psi_h^*(\mathbf{x}) := \frac{1}{2} \left(\sum_{i \in [1,I]} \psi_i^T \theta_i^T(\mathbf{x}) + \sum_{k \in [1,K]} \psi_k^P \theta_k^P(\mathbf{x}) \right)$$

(3.12)
$$\tilde{\psi}_h(\sigma) := \sum_{j \in \Gamma} \tilde{\psi}_j \theta_j(\sigma),$$

where θ_i^T , θ_k^P and θ_j are respectively the characteristic functions of the cells T_i and P_k and of the edge $A_j \subset \Gamma$. Then, there holds

(3.13)
$$\sum_{j} \int_{D_{j}} \nabla \phi_{h} \cdot \nabla \psi_{h}(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega} f \, \psi_{h}^{*}(\mathbf{x}) \, d\mathbf{x} + \int_{\Gamma_{N}} g \, \tilde{\psi}_{h}(\sigma) \, d\sigma \, .$$

Proof. In Eq. (3.10), the left-hand side is evaluated with (2.2) and (2.12), while the right-hand side is evaluated with (2.1), (2.4), (3.3), (3.6), (3.11) and (3.12). \square

4. A representation of the error in the energy norm. Let us first recall that the solution of system (1.1)-(1.2)-(1.3) verifies

(4.1)
$$\int_{\Omega} \nabla \hat{\phi} \cdot \nabla \psi (\mathbf{x}) d\mathbf{x} = \int_{\Omega} f \psi (\mathbf{x}) d\mathbf{x} + \int_{\Gamma_N} g \psi (\sigma) d\sigma$$

for all $\psi \in H_D^1 := \{ \psi \in H^1(\Omega) / \psi = 0 \text{ on } \Gamma_D \}$. We seek to measure the broken H^1 semi norm of the error between the exact solution $\hat{\phi}$ and the function ϕ_h associated to the solution of the DDFV scheme. For this, we shall define

(4.2)
$$e = \left(\sum_{j} \int_{D_{j}} \left| \nabla \hat{\phi} - \nabla_{h} \phi_{h} \right|^{2} (\mathbf{x}) d\mathbf{x} \right)^{1/2}$$

and we follow a now classical strategy, employed as soon as the discrete solution does not belong to $H^1(\Omega)$ (see [3, 11, 21]). Since $\nabla \hat{\phi} - \nabla_h \phi_h$ belongs to $(L^2(\Omega))^2$, we may write its discrete Helmholtz-Hodge decomposition in the following way

$$(4.3) \nabla \hat{\phi} - \nabla_h \phi_h = \nabla \hat{\Phi} + \nabla \times \hat{\Psi}$$

with $\hat{\Phi} \in H_D^1(\Omega)$ and $\hat{\Psi} \in H_N^1 := \{\hat{\Psi} \in H^1(\Omega), \nabla \hat{\Psi} \cdot \boldsymbol{\tau} = 0 \text{ over } \Gamma_N \}$. This decomposition is orthogonal and there holds

(4.4)
$$\nabla \hat{\Psi} \cdot \boldsymbol{\tau} = 0 \text{ on } \Gamma_N \Leftrightarrow \exists (c_N) \text{ s.t. } \hat{\Psi}_{|\Gamma_N} = c_N.$$

If Γ_N were multiply connected, then there would exist one constant c_q for each component $\Gamma_{N,q}$ of Γ_N . Then, there holds

$$e^{2} = \left\| \nabla \hat{\Phi} \right\|_{0,\Omega}^{2} + \left\| \nabla \times \hat{\Psi} \right\|_{0,\Omega}^{2}$$

$$(4.5) = \sum_{j} \int_{D_{j}} (\nabla \hat{\phi} - \nabla_{h} \phi_{h}) \cdot \nabla \hat{\Phi} (\mathbf{x}) d\mathbf{x} + \sum_{j} \int_{D_{j}} (\nabla \hat{\phi} - \nabla_{h} \phi_{h}) \cdot \nabla \times \hat{\Psi} (\mathbf{x}) d\mathbf{x}$$

$$:= i_{1} + i_{2}.$$

In order to find a suitable representation of i_1 and i_2 , we shall need the following definitions

DEFINITION 4.1. The boundary ∂D_j of any diamond-cell D_j is composed of the four segments $\left[G_{i_{\alpha}(j)}S_{k_{\beta}(j)}\right]$ with $(\alpha,\beta)\in\{1;2\}$. (see Fig. 2.2). Let us denote by S the set of these edges when j runs over the whole set of diamond-cells and $\overset{\circ}{S}$ those edges in S that do not lie on the boundary Γ . Each $s\in S$ is thus a segment that we shall denote by $\left[G_{i(s)}S_{k(s)}\right]$. We shall also write $s\in \overset{\circ}{T}_i$ (resp. $s\in \overset{\circ}{P}_k$) if $s\subset T_i$ (resp. $s\subset P_k$) and $s\not\subset \Gamma$. Finally, we shall denote by \mathbf{n}_s one of the two unit normal vectors to s, arbitrarily chosen among the two possible choices but then fixed for the sequel, and $\left[\nabla_h\phi_h\cdot\mathbf{n}_s\right]_s$, the jump of the normal component of $\nabla_h\phi_h$ through s.

PROPOSITION 4.2. Let $\phi = (\phi_i^T, \phi_k^P)$ be the solution of the scheme (3.1)–(3.6) and ϕ_h the function associated to ϕ by Def 2.8. Let $\hat{\Phi}$ be defined in Eq. (4.3). Let $\Phi = (\Phi_i^T, \Phi_k^P) \in \mathbb{R}^{I+J^\Gamma} \times \mathbb{R}^K$ be such that

(4.6)
$$\Phi_k^P = 0, \forall k \in \bar{\Gamma}_D \quad and \quad \Phi_i^T = 0, \forall i \in \Gamma_D.$$

The following representation holds

$$i_{1} = \frac{1}{2} \sum_{i \in [1,I]} \int_{T_{i}} f\left(\hat{\Phi} - \Phi_{i}^{T}\right) (\mathbf{x}) d\mathbf{x} + \frac{1}{2} \sum_{k \in [1,K]} \int_{P_{k}} f\left(\hat{\Phi} - \Phi_{k}^{P}\right) (\mathbf{x}) d\mathbf{x}$$

$$+ \sum_{A_{j} \subset \Gamma_{N}} \int_{A_{j}} (g - \bar{g}_{j}) \left(\hat{\Phi} - \tilde{\Phi}_{h}\right) (\sigma) d\sigma$$

$$- \frac{1}{2} \sum_{i \in [1,I]} \sum_{s \subset \mathring{\Gamma}_{i}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \mathbf{n}_{s}\right]_{s} \left(\hat{\Phi} - \Phi_{i}^{T}\right) (\sigma) d\sigma$$

$$- \frac{1}{2} \sum_{k \in [1,K]} \sum_{s \subset \mathring{P}_{k}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \mathbf{n}_{s}\right]_{s} \left(\hat{\Phi} - \Phi_{k}^{P}\right) (\sigma) d\sigma.$$

Proof. First, since $\hat{\Phi} \in H_D^1$, we may apply (4.1) and we obtain

$$\begin{split} i_1 &= \sum_j \int_{D_j} \nabla \hat{\phi} \cdot \nabla \hat{\Phi} \left(\mathbf{x} \right) d\mathbf{x} - \sum_j \int_{D_j} \nabla_h \phi_h \cdot \nabla \hat{\Phi} \left(\mathbf{x} \right) d\mathbf{x} \\ &= \int_{\Omega} \nabla \hat{\phi} \cdot \nabla \hat{\Phi} \left(\mathbf{x} \right) d\mathbf{x} - \sum_j \int_{D_j} \nabla_h \phi_h \cdot \nabla \hat{\Phi} \left(\mathbf{x} \right) d\mathbf{x} \\ &= \int_{\Omega} f \, \hat{\Phi} \left(\mathbf{x} \right) d\mathbf{x} + \int_{\Gamma_N} g \, \hat{\Phi} \left(\sigma \right) d\sigma - \sum_j \int_{D_j} \nabla_h \phi_h \cdot \nabla \hat{\Phi} \left(\mathbf{x} \right) d\mathbf{x} \,. \end{split}$$

For any arbitrary $\Phi = (\Phi_i^T, \Phi_k^P)$ verifying (4.6), formula (3.13) leads to

(4.8)
$$i_{1} = \int_{\Omega} f\left(\hat{\Phi} - \Phi_{h}^{*}\right) (\mathbf{x}) d\mathbf{x} + \int_{\Gamma_{N}} g\left(\hat{\Phi} - \tilde{\Phi}_{h}\right) (\sigma) d\sigma$$
$$- \sum_{j} \int_{D_{j}} \nabla_{h} \phi_{h} \cdot \left(\nabla \hat{\Phi} - \nabla_{h} \Phi_{h}\right) (\mathbf{x}) d\mathbf{x}.$$

Let us now consider a diamond-cell D_j . Since $\nabla_h \phi_h$ is a constant over D_j , we may write, using Green's formula over D_j ,

$$\int_{D_j} \nabla_h \phi_h \cdot \left(\nabla \hat{\Phi} - \nabla_h \Phi_h \right) (\mathbf{x}) d\mathbf{x} = \int_{\partial D_j} \nabla_h \phi_h \cdot \mathbf{n}_{\partial D_j} \left(\hat{\Phi} - \Phi_h \right) (\sigma) d\sigma,$$

where $\mathbf{n}_{\partial D_j}$ is the unit normal vector exterior to D_j on its boundary. Moreover, for each s, the function Φ_h belongs to P^1 over s and the quantity $\nabla_h \phi_h \cdot \mathbf{n}_{\partial D_j}$ is a constant; the integral of $\nabla_h \phi_h \cdot \mathbf{n}_{\partial D_j} \Phi_h$ along this edge may thus be exactly computed by the midpoint rule; since, by definition of Φ_h , this function equals $\frac{1}{2} \left(\Phi_{i(s)}^T + \Phi_{k(s)}^P \right)$ at the midpoint of s, there holds:

$$\int_{D_{i}} \nabla_{h} \phi_{h} \cdot \left(\nabla \hat{\Phi} - \nabla_{h} \Phi_{h} \right) (\mathbf{x}) d\mathbf{x} = \int_{\partial D_{i}} \nabla_{h} \phi_{h} \cdot \mathbf{n}_{\partial D_{i}} \left[\hat{\Phi} - \frac{1}{2} \left(\Phi_{i(s)}^{T} + \Phi_{k(s)}^{P} \right) \right] (\sigma) d\sigma.$$

Each $s \in \stackrel{\circ}{S}$ contributes twice to the sum of integrals contained in the second line of (4.8), since each interior s is located at the interface of two diamond-cells D_j . Moreover, since $\hat{\Phi} \in H^1(\Omega)$, the jump of this function through s vanishes. Further, each diamond-cell D_j whose boundary intersects Γ has two edges s of equal length included in Γ , whose union is exactly A_j . On these two edges, $\nabla_h \phi_h \cdot \mathbf{n}_{\partial D_j}$ has the same value and one may easily remark that

$$\int_{\partial D_{j}\cap\Gamma} \nabla_{h} \phi_{h} \cdot \mathbf{n}_{\partial D_{j}} \left[\hat{\Phi} - \frac{1}{2} \left(\Phi_{i(s)}^{T} + \Phi_{k(s)}^{P} \right) \right] (\sigma) d\sigma =$$

$$\int_{A_{i}} \nabla_{h} \phi_{h} \cdot \mathbf{n}_{j} \left(\hat{\Phi} - \tilde{\Phi}_{h} \right) (\sigma) d\sigma ,$$

where we recall that $\tilde{\Phi}_h$ is defined through formulas analogous to (2.3) and (3.12). Now, we have to distinguish the case of the boundary Γ_D on which $\hat{\Phi} = 0$ and on which Φ , and thus $\tilde{\Phi}_h$ also vanish, and the case of the boundary Γ_N , on which $\nabla_h \phi_h \cdot \mathbf{n}_j$ is known thanks to the boundary condition (3.5). With these remarks, may write

$$(4.10) \qquad \sum_{j} \int_{D_{j}} \nabla_{h} \phi_{h} \cdot \left(\nabla \hat{\Phi} - \nabla_{h} \Phi_{h} \right) (\mathbf{x}) d\mathbf{x} =$$

$$\sum_{s \in \mathring{S}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \mathbf{n}_{s} \right]_{s} \left[\hat{\Phi} - \frac{1}{2} \left(\Phi_{i(s)}^{T} + \Phi_{k(s)}^{P} \right) \right] (\sigma) d\sigma$$

$$+ \sum_{A_{j} \subset \Gamma_{N}} \int_{A_{j}} \bar{g}_{j} \left(\hat{\Phi} - \tilde{\Phi}_{h} \right) (\sigma) d\sigma .$$

Then, we may write $\hat{\Phi} - \frac{1}{2} \left(\Phi_{i(s)}^T + \Phi_{k(s)}^P \right) = \frac{1}{2} \left[\left(\hat{\Phi} - \Phi_{i(s)}^T \right) + \left(\hat{\Phi} - \Phi_{k(s)}^P \right) \right]$. Summing in the first line of (4.10) the various contributions of Φ_i^T for a fixed i and the various contributions of Φ_k^P for a fixed k, we obtain the following formula

$$\sum_{j} \int_{D_{j}} \nabla_{h} \phi_{h} \cdot \left(\nabla \hat{\Phi} - \nabla_{h} \Phi_{h} \right) (\mathbf{x}) d\mathbf{x} = \frac{1}{2} \sum_{i \in [1, I]} \sum_{s \subset \mathring{T}_{i}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \mathbf{n}_{s} \right]_{s} \left(\hat{\Phi} - \Phi_{i}^{T} \right) (\sigma) d\sigma
+ \frac{1}{2} \sum_{k \in [1, K]} \sum_{s \subset \mathring{P}_{k}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \mathbf{n}_{s} \right]_{s} \left(\hat{\Phi} - \Phi_{k}^{P} \right) (\sigma) d\sigma
+ \sum_{A_{j} \subset \Gamma_{N}} \int_{A_{j}} \bar{g}_{j} \left(\hat{\Phi} - \tilde{\Phi}_{h} \right) (\sigma) d\sigma.$$

Finally, according to (4.8) and the definition (3.11) of Φ_h^* , we obtain (4.7). \square

Before we turn to a representation formula for i_2 in (4.5), we need some technical lemmas related to the $L^2(\Omega)$ scalar product of discrete gradients and curls.

LEMMA 4.3. Let $\phi = (\phi_i^T, \phi_k^P)$ be the solution of the scheme (3.1)–(3.6). Let $\Psi = (\Psi_i^T, \Psi_k^P) \in \mathbb{R}^{I+J^\Gamma} \times \mathbb{R}^K$ be such that

(4.12)
$$\Psi_k^P = c_N , \forall k \in \bar{\Gamma}_N \text{ and } \Psi_i^T = c_N , \forall i \in \Gamma_N .$$

There holds

$$(4.13) \qquad (\nabla_h^{T,P} \times (\nabla_h^D \phi), \Psi)_{T,P} = 0.$$

Proof. According to Eq. (2.9) and (2.10), there holds

$$(4.14) \quad (\nabla_h^T \times (\nabla_h^D \phi))_i = 0, \ \forall i \in [1, I] \ \text{ and } \ (\nabla_h^P \times (\nabla_h^D \phi))_k = 0, \ \forall k \notin \Gamma.$$

On the other hand, since the solution of the discrete problem verifies (3.4), there holds, for $k \in \stackrel{\circ}{\Gamma}_D$, with the notations of Fig. 2.3

$$\phi_{I_1}^T = \frac{1}{2}(\phi_k^P + \phi_{K_1}^P) \text{ and } \phi_{I_2}^T = \frac{1}{2}(\phi_k^P + \phi_{K_2}^P)\,,$$

which implies, thanks to Eq. (2.11),

(4.15)
$$(\nabla_h^P \times (\nabla_h^D \phi))_k = 0, \ \forall k \in \overset{\circ}{\Gamma}_D.$$

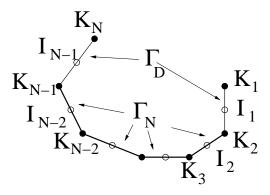


Fig. 4.1. Notations for the Neumann boundary

With the definition (2.1) and the choice (4.12), Eqs. (4.14) and (4.15) imply that

$$(4.16) \qquad (\nabla_h^{T,P} \times (\nabla_h^D \phi), \Psi)_{T,P} = \frac{1}{2} c_N \sum_{k \in \bar{\Gamma}_N} |P_k| (\nabla_h^P \times (\nabla_h^D \phi))_k.$$

Now, if Γ_N is a closed path, formula (2.11) imply that the sum in (4.16) vanishes since every ϕ_i^T and every ϕ_k^P in that sum have two contributions that cancel. On the other hand, if Γ_N is not a closed path, then let us consider the boundary Γ_N represented on Fig. 4.1. The points $k \in \bar{\Gamma}_N$ are the points K_2, \dots, K_{N-1} . We have also displayed the neighboring edges $[K_1, K_2]$ and $[K_{N-1}, K_N]$ located on the Dirichlet boundaries which are neighboring to Γ_N . According to formula (2.11), in which the notations of Fig. 2.3 are used, we obtain

$$\sum_{k \in \bar{\Gamma}_N} |P_k| (\nabla_h^P \times (\nabla_h^D \phi))_k = \sum_{p \in [1, N-2]} (\phi_{I_{p+1}} - \phi_{I_p}) + \frac{1}{2} (\phi_{K_p} - \phi_{K_{p+2}})
(4.17) = -\phi_{I_1} + \frac{1}{2} (\phi_{K_1} + \phi_{K_2}) + \phi_{I_{N-1}} - \frac{1}{2} (\phi_{K_{N-1}} + \phi_{K_N}).$$

Since we have chosen the solution ϕ of the discrete problem such that (3.4) is verified on the Dirichlet boundaries, then $\phi_{I_1} = \frac{1}{2}(\phi_{K_1} + \phi_{K_2})$ and $\phi_{I_{N-1}} = \frac{1}{2}(\phi_{K_{N-1}} + \phi_{K_N})$. The sum in (4.16) thus vanishes. \square

LEMMA 4.4. Let $\phi = (\phi_i^T, \phi_k^P)$ and $\Psi = (\Psi_i^T, \Psi_k^P)$ be like in lemma 4.3. Let ϕ_h and Ψ_h be their associated functions through Def. 2.8. There holds

$$(4.18) \sum_{i} \int_{D_{j}} \nabla_{h} \phi_{h} \cdot \nabla_{h} \times \Psi_{h}(\mathbf{x}) d\mathbf{x} = \int_{\Gamma_{D}} \nabla \phi_{d} \cdot \boldsymbol{\tau} \, \tilde{\Psi}_{h}(\sigma) d\sigma + c_{N} \int_{\Gamma_{N}} \nabla \hat{\phi} \cdot \boldsymbol{\tau}(\sigma) d\sigma.$$

Proof. Applying (2.12), (2.13) and the discrete Green formula (2.6), there holds

$$\sum_{j} \int_{D_{j}} \nabla_{h} \phi_{h} \cdot \nabla_{h} \times \Psi_{h} (\mathbf{x}) d\mathbf{x} = (\nabla_{h}^{D} \phi, \nabla_{h}^{D} \times \Psi)_{D}$$

$$= (\nabla_{h}^{T,P} \times (\nabla_{h}^{D} \phi), \Psi)_{T,P} + (\nabla_{h}^{D} \phi \cdot \boldsymbol{\tau}, \tilde{\Psi})_{\Gamma,h} .$$
(4.19)

The first term in the right-hand side of Eq. (4.19) vanishes thanks to lemma 4.3 and the second term may be split into a contribution over Γ_D and a contribution over Γ_N .

Now, for any $j \in \Gamma$, Def. 2.5 and the fact that for boundary diamond-cells $|A'_{j2}| = 0$ and $2|D_j| = |A_j| |A'_{j1}| \mathbf{n}'_{j1} \cdot \boldsymbol{\tau}_j$, there holds $(\nabla^D_h \phi)_j \cdot \boldsymbol{\tau}_j = \frac{1}{|A_j|} (\phi_{k_2(j)} - \phi_{k_1(j)})$. In particular, on the boundary Γ_D , the boundary conditions (3.4) imply

$$(\nabla_{h}^{D}\phi)_{j} \cdot \boldsymbol{\tau}_{j} \,\tilde{\Psi}_{j} = \frac{1}{|A_{j}|} (\phi_{d}(S_{k_{2}(j)}) - \phi_{d}(S_{k_{1}(j)})) \,\tilde{\Psi}_{j} = \frac{1}{|A_{j}|} \int_{A_{j}} \nabla \phi_{d} \cdot \boldsymbol{\tau} \,(\sigma) \,d\sigma \,\tilde{\Psi}_{j}$$

$$= \frac{1}{|A_{j}|} \int_{A_{j}} \nabla \phi_{d} \cdot \boldsymbol{\tau} \,\tilde{\Psi}_{h} \,(\sigma) \,d\sigma,$$

$$(4.20)$$

since $\tilde{\Psi}_h$ is a constant equal to $\tilde{\Psi}_j$ on A_j . This implies that

$$(4.21) \left(\nabla_{h}^{D}\phi \cdot \boldsymbol{\tau}, \tilde{\Psi}\right)_{\Gamma_{D}, h} = \sum_{j \in \Gamma_{D}} |A_{j}| \left(\nabla_{h}^{D}\phi\right)_{j} \cdot \boldsymbol{\tau}_{j} \, \tilde{\Psi}_{j} = \int_{\Gamma_{D}} \nabla\phi_{d} \cdot \boldsymbol{\tau} \, \tilde{\Psi}_{h}\left(\sigma\right) d\sigma.$$

As far as the contribution over Γ_N is concerned, we infer from (4.12) that $\tilde{\Psi}_j = c_N$ for all $j \in \Gamma_N$. This allows us to write

$$(\nabla_h^D \phi \cdot \boldsymbol{\tau}, \tilde{\Psi})_{\Gamma_N, h} = c_N \sum_{j \in \Gamma_N} (\phi_{k_2(j)} - \phi_{k_1(j)}) = c_N (\phi_{K_2} - \phi_{K_{N-1}}),$$

where the notations of figure 4.1 are used. If Γ_N is a closed path, then $S_{K_2} = S_{K_{N-1}}$ and this sum vanishes and is thus equal to $c_N \int_{\Gamma_N} \nabla \hat{\phi} \cdot \boldsymbol{\tau} (\sigma) d\sigma$ which also vanishes. On the other hand, if Γ_N is not a closed path, then K_2 and K_{N-1} are on $\bar{\Gamma}_D$ and the values of ϕ at those points are imposed to be the values of ϕ_d by (3.4), that is to say the values of $\hat{\phi}$ at those points, which means

$$(4.22) \quad (\nabla_h^D \phi \cdot \boldsymbol{\tau}, \tilde{\Psi})_{\Gamma_N, h} = c_N(\hat{\phi}(S_{K_2}) - \hat{\phi}(S_{K_{N-1}})) = c_N \int_{\Gamma_N} \nabla \hat{\phi} \cdot \boldsymbol{\tau} (\sigma) d\sigma.$$

Eqs. (4.21) and (4.22), together with (4.19) lead to (4.18). \square

PROPOSITION 4.5. Let $\phi = (\phi_i^T, \phi_k^P)$ be the solution of the scheme (3.1)–(3.6) and ϕ_h its associated function. Let $\hat{\Psi}$ be defined in Eq. (4.3). Let $\Psi = (\Psi_i^T, \Psi_k^P) \in \mathbb{R}^{I+J^{\Gamma}} \times \mathbb{R}^K$ be such that (4.12) holds and let Ψ_h be its associated function. Let $t := \nabla \phi_d \cdot \boldsymbol{\tau}$ be defined on the boundary Γ_D . Then, the following representation holds

$$i_{2} = \sum_{A_{j} \subset \Gamma_{D}} \int_{A_{j}} (t - \bar{t}_{j}) \left(\hat{\Psi} - \tilde{\Psi}_{h}\right) (\sigma) d\sigma$$

$$- \frac{1}{2} \sum_{i \in [1, I]} \sum_{s \subset \mathring{\Gamma}_{i}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \boldsymbol{\tau}_{s}\right]_{s} \left(\hat{\Psi} - \Psi_{i}^{T}\right) (\sigma) d\sigma$$

$$- \frac{1}{2} \sum_{k \in [1, K]} \sum_{s \subset \mathring{P}_{k}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \boldsymbol{\tau}_{s}\right]_{s} \left(\hat{\Psi} - \Psi_{k}^{P}\right) (\sigma) d\sigma.$$

Proof. From (4.5), there holds

$$i_{2} = \sum_{j} \int_{D_{j}} (\nabla \hat{\phi} - \nabla_{h} \phi_{h}) \cdot \nabla \times \hat{\Psi}(\mathbf{x}) d\mathbf{x}$$

$$= \int_{\Omega} \nabla \hat{\phi} \cdot \nabla \times \hat{\Psi}(\mathbf{x}) d\mathbf{x} - \sum_{j} \int_{D_{j}} \nabla_{h} \phi_{h} \cdot \nabla_{h} \times \Psi_{h}(\mathbf{x}) d\mathbf{x}$$

$$- \sum_{j} \int_{D_{j}} \nabla_{h} \phi_{h} \cdot (\nabla \times \hat{\Psi} - \nabla_{h} \times \Psi_{h}) (\mathbf{x}) d\mathbf{x}.$$

By application of the continuous Green formula, there holds

$$\int_{\Omega} \nabla \hat{\phi} \cdot \nabla \times \hat{\Psi} (\mathbf{x}) d\mathbf{x} = \int_{\Gamma} \nabla \hat{\phi} \cdot \boldsymbol{\tau} \, \hat{\Psi} (\sigma) d\sigma
= \int_{\Gamma_{D}} \nabla \phi_{d} \cdot \boldsymbol{\tau} \, \hat{\Psi} (\sigma) d\sigma + c_{N} \int_{\Gamma_{N}} \nabla \hat{\phi} \cdot \boldsymbol{\tau} (\sigma) d\sigma ,$$
(4.25)

where we have taken into account the boundary condition (1.2) and Eq. (4.4). Using (4.25) and (4.18), formula (4.24) may be rewritten as

(4.26)
$$i_{2} = \int_{\Gamma_{D}} \nabla \phi_{d} \cdot \boldsymbol{\tau} \left(\hat{\Psi} - \tilde{\Psi}_{h} \right) (\sigma) d\sigma - \sum_{j} \int_{D_{j}} \nabla_{h} \phi_{h} \cdot \left(\nabla \times \hat{\Psi} - \nabla_{h} \times \Psi_{h} \right) (\mathbf{x}) d\mathbf{x}.$$

We may now compute the second term in the right-hand side of Eq. (4.26) just like we computed the last term in the right-hand side of Eq. (4.8). Considering separately inner and boundary edges, we may write

$$\sum_{j} \int_{D_{j}} \nabla_{h} \phi_{h} \cdot \left(\nabla \times \hat{\Psi} - \nabla_{h} \times \Psi_{h} \right) (\mathbf{x}) d\mathbf{x} =$$

$$\sum_{s \in \mathring{S}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \boldsymbol{\tau}_{s} \right]_{s} \left[\hat{\Psi} - \frac{1}{2} \left(\Psi_{i(s)}^{T} + \Psi_{k(s)}^{P} \right) \right] (\sigma) d\sigma$$

$$+ \sum_{j \in \Gamma} \int_{\partial D_{j} \cap \Gamma} \nabla_{h} \phi_{h} \cdot \boldsymbol{\tau}_{\partial D_{j}} \left[\hat{\Psi} - \frac{1}{2} \left(\Psi_{i(s)}^{T} + \Psi_{k(s)}^{P} \right) \right] (\sigma) d\sigma .$$

As far as boundary edges are concerned, a formula analogous to (4.9) holds:

$$\int_{\partial D_{j}\cap\Gamma} \nabla_{h}\phi_{h} \cdot \boldsymbol{\tau}_{\partial D_{j}} \left[\hat{\Psi} - \frac{1}{2} \left(\Psi_{i(s)}^{T} + \Psi_{k(s)}^{P} \right) \right] (\sigma) d\sigma =$$

$$\int_{A_{j}} \nabla_{h}\phi_{h} \cdot \boldsymbol{\tau}_{j} \left[\hat{\Psi} - \tilde{\Psi}_{h} \right] (\sigma) d\sigma .$$

Now, if $j \in \Gamma_N$, then $\hat{\Psi}$ is a constant on A_j whose value is c_N ; the same holds for $\hat{\Psi}_h$ thanks to (4.12). The contribution over the boundary Γ_N thus vanishes in the above expression. As far as $\nabla_h \phi_h \cdot \boldsymbol{\tau}_j$ is concerned, we have seen thanks to (4.20), that its value over $\partial D_j \cap \Gamma_D$ is

$$\nabla_{h}\phi_{h}\cdot\boldsymbol{\tau}_{j}=\bar{t}_{j}:=\frac{1}{\left|A_{j}\right|}\int_{A_{j}}\nabla\phi_{d}\cdot\boldsymbol{\tau}\left(\sigma\right)d\sigma\:.$$

We thus have

$$(4.29) \sum_{j \in \Gamma} \int_{\partial D_j \cap \Gamma} \nabla_h \phi_h \cdot \boldsymbol{\tau}_j \left[\hat{\Psi} - \frac{1}{2} \left(\Psi_{i(s)}^T + \Psi_{k(s)}^P \right) \right] (\sigma) d\sigma = \int_{\Gamma_D} \bar{t} \left[\hat{\Psi} - \tilde{\Psi}_h \right] (\sigma) d\sigma,$$

where \bar{t} is the piecewise constant function defined over each segment $A_j \subset \Gamma_D$ by $\bar{t}(\sigma) := \bar{t}_j \theta_j(\sigma)$. If we compute the first term in the right-hand side of (4.27) just like we computed the first term in the right-hand side of (4.10), and taking (4.29) into account, Eq. (4.26) leads to (4.23). \square

5. A computable error bound.

5.1. Preliminaries. In the expression (4.7) of i_1 , as well as in the expression (4.23) of i_2 , the values of (Φ_i^T, Φ_k^P) and (Ψ_i^T, Ψ_k^P) are up to now arbitrary, except for boundary values given by (4.6) and (4.12).

DEFINITION 5.1. Since Φ and Ψ are not necessarily more regular than $H^1(\Omega)$, we choose as an interpolation their L^2 projection on the primal and dual cells

$$(5.1) \quad \Phi_i^T = \frac{1}{|T_i|} \int_{T_i} \hat{\Phi}(\mathbf{x}) \, d\mathbf{x} \quad \forall i \in [1, I] , \ \Phi_k^P = \frac{1}{|P_k|} \int_{P_k} \hat{\Phi}(\mathbf{x}) \, d\mathbf{x} \quad \forall k \notin \bar{\Gamma}_D .$$

$$(5.2) \quad \Psi_i^T = \frac{1}{|T_i|} \int_{T_i} \hat{\Psi}(\mathbf{x}) \, d\mathbf{x} \quad \forall i \in [1, I] , \quad \Psi_k^P = \frac{1}{|P_k|} \int_{P_k} \hat{\Psi}(\mathbf{x}) \, d\mathbf{x} \quad \forall k \notin \bar{\Gamma}_N .$$

In order to complete the definition of (Φ_i^T, Φ_k^P) (resp. (Ψ_i^T, Ψ_k^P)), there remains to define the values at the centers of the boundary edges located on Γ_N (resp. on Γ_D). The values Φ_i^T for $i \in \Gamma_N$ and the values of Ψ_i^T for $i \in \Gamma_D$ are chosen such that

$$\tilde{\Phi}_j = \frac{1}{|A_j|} \int_{A_j} \hat{\Phi}(\sigma) \, d\sigma \quad and \quad \tilde{\Psi}_j = \frac{1}{|A_j|} \int_{A_j} \hat{\Psi}(\sigma) \, d\sigma \,,$$

which is easy if we remind that $\tilde{\Phi}_j$ and $\tilde{\Psi}_j$ are defined by formulas analogous to (2.3), while the values of Φ_k^P at the vertices are given by (5.1) or (4.6) and the values of Ψ_k^P at the vertices are given by (5.2) or (4.12).

In what follows, we shall need Poincaré-type inequalities, as well as a trace inequality.

LEMMA 5.2. Let ω be an open bounded set which is star-shaped with respect to one of its points. Let $u \in H^1(\omega)$ and let \bar{u}_{ω} be the mean-value of u over ω . Then,

(5.3)
$$\exists C(\omega), s.t. \|u - \bar{u}_{\omega}\|_{L^{2}(\omega)} \le C(\omega) \operatorname{diam}(\omega) \|\nabla u\|_{L^{2}(\omega)}.$$

Note that when ω is convex, a universal constant $C(\omega)$ is given by $\frac{1}{\pi}$. When ω is not convex, we may use explicitly computable formulas given, for example, by [7, 28].

LEMMA 5.3. Let ω be an open polygonal set such that $\bar{\omega}$ is star-shaped with respect to one of its vertices z located on a part γ_D (with non vanishing measure) of the boundary $\gamma = \partial \omega$. Let us suppose that at least one of the edges s included in $\partial \omega$ is such that the considered point z is a vertex of s and such that $s \subset \gamma_D$. Then,

(5.4)
$$\exists C(\omega, \gamma_D) \, s.t. \, \|u\|_{L^2(\omega)} \le C(\omega, \gamma_D) \, |\omega|^{1/2} \, \|\nabla u\|_{L^2(\omega)}.$$

for any function $u \in H^1(\omega)$, such that $u_{|\gamma_D} = 0$.

We may precise $C(\omega, \gamma_D)$ by using formula (3.2) of reference [7].

REMARK 5.4. In (5.3) and (5.4), the constants $C(\omega)$ and $C(\omega, \gamma_D)$ do not depend on the diameter of ω , but only on its shape.

LEMMA 5.5. Let T be a triangle and let E be one of its edges. Then, for any function $u \in H^1(T)$, such that $\int_E u(\sigma)d\sigma = 0$, there holds

(5.5)
$$||u||_{L^{2}(E)} \leq \frac{\alpha}{\sqrt{2}\hat{\rho}} \left(\frac{|E|}{|T|}\right)^{1/2} \operatorname{diam}(T) ||\nabla u||_{L^{2}(T)},$$

where $\alpha \approx 0.730276$ and $\hat{\rho} = 1 - \frac{\sqrt{2}}{2}$ are given by formula (23) of [21].

Finally, we shall also need a trace inequality; we could for example choose that given by Theorem 4.1 and Remark 4.1 in [7]. Since we try to estimate as precisely as possible the constants which are involved in the forthcoming bounds, we prefer using a slightly improved version of it.

LEMMA 5.6. Let T be a triangle and let E be one of its edges; let ρ be the distance from E to the vertex of T opposite to E, and let σ be the length of the longest among the two other sides of T. Let $\varepsilon > 0$ be an arbitrary real-valued number; then for all $u \in H^1(T)$, there holds

$$||u||_{L^{2}(E)}^{2} \leq \frac{1}{\rho} \left((2 + \varepsilon^{-2}) ||u||_{L^{2}(T)}^{2} + \varepsilon^{2} \sigma^{2} ||\nabla u||_{L^{2}(T)}^{2} \right).$$

The proof of (5.6) is omitted.

5.2. Bounds for the higher-order terms. Let us consider the expression of i_1 and i_2 given by (4.7) and (4.23) and let us start by bounding the higher-order terms (HOT). Indeed, we know thanks to the *a priori* estimations obtained in [13] that the error norm e behaves like O(h) when the solution $\hat{\phi}$ is sufficiently regular. Any contribution in i_1 or i_2 that would behave like $O(h^{1+\alpha})$ with $\alpha > 0$ would then be asymptotically negligible in the error estimation. Often, one does not include these HOT in the expression of the *a posteriori* estimators (see, e.g., [27]). However, since our purpose is to obtain a guaranteed upper bound for the error, we shall include the HOT in our estimator.

PROPOSITION 5.7. Let $h_i^T := \operatorname{diam}(T_i)$, $h_k^P := \operatorname{diam}(P_k)$. Let \bar{f}_i^T (resp. \bar{f}_k^P) be the mean-value of f over T_i (resp. over P_k). There exist computable constants $C(T_i)$, $C(P_k)$ and $C(P_k, \partial P_k \cap \Gamma_D)$ such that

$$\left| \sum_{i} \int_{T_{i}} f\left(\hat{\Phi} - \Phi_{i}^{T}\right)(\mathbf{x}) d\mathbf{x} \right| \leq osc(f, T, \Omega) \left\| \nabla \hat{\Phi} \right\|_{L^{2}(\Omega)},$$

$$(5.8) \left| \sum_{k} \int_{P_{k}} f\left(\hat{\Phi} - \Phi_{k}^{P}\right)(\mathbf{x}) d\mathbf{x} \right| \leq \left(osc^{2}(f, P, \Omega) + str^{2}(f, P, \Gamma_{D}, \Omega) \right)^{1/2} \left\| \nabla \hat{\Phi} \right\|_{L^{2}(\Omega)},$$

(5.9)
$$\left| \sum_{j \in \Gamma_N} \int_{A_j} (g - \bar{g}_j) \left(\hat{\Phi} - \tilde{\Phi}_h \right) (\sigma) d\sigma \right| \leq osc(g, \Gamma_N) \left\| \nabla \hat{\Phi} \right\|_{L^2(\Omega)},$$

(5.10)
$$\left| \sum_{j \in \Gamma_D} \int_{A_j} (t - \bar{t}_j) \left(\hat{\Psi} - \tilde{\Psi}_h \right) (\sigma) d\sigma \right| \le osc(t, \Gamma_D) \left\| \nabla \hat{\Psi} \right\|_{L^2(\Omega)},$$

where, by analogy with [3], we have defined

(5.11)
$$osc(f, T, \Omega) = \left(\sum_{i \in [1, N]} \left(C(T_i) h_i^T \right)^2 \left\| f - \bar{f}_i^T \right\|_{L^2(T_i)}^2 \right)^{1/2},$$

(5.12)
$$osc(f, P, \Omega) = \left(\sum_{k \notin \bar{\Gamma}_D} \left(C(P_k) h_k^P \right)^2 \| f - \bar{f}_k^P \|_{L^2(P_k)}^2 \right)^{1/2},$$

$$(5.13) \quad str(f, P, \Gamma_D, \Omega) = \left(\sum_{k \in \bar{\Gamma}_D} \left(C(P_k, \partial P_k \cap \Gamma_D) \right)^2 |P_k| \|f\|_{L^2(P_k)}^2 \right)^{1/2},$$

$$(5.14) \quad osc(g, \Gamma_N) = \alpha(1 + \sqrt{2}) \left(\sum_{j \in \Gamma_N} \frac{\operatorname{diam}^2(D_j)}{|D_j|} |A_j| \|g - \bar{g}_j\|_{L^2(A_j)}^2 \right)^{1/2},$$

$$(5.15) osc(t, \Gamma_D) = \alpha(1 + \sqrt{2}) \left(\sum_{j \in \Gamma_D} \frac{\operatorname{diam}^2(D_j)}{|D_j|} |A_j| \|t - \bar{t}_j\|_{L^2(A_j)}^2 \right)^{1/2}.$$

Proof. Since Φ_i^T was chosen as the mean value of $\hat{\Phi}$ over T_i (see (5.1)), we have

$$\int_{T_i} f\left(\hat{\Phi} - \Phi_i^T\right) (\mathbf{x}) d\mathbf{x} = \int_{T_i} \left(f - \bar{f}_i^T\right) \left(\hat{\Phi} - \Phi_i^T\right) (\mathbf{x}) d\mathbf{x}.$$

Applying the Cauchy-Schwarz inequality, formula (5.3) (since $\hat{\Phi} \in H^1(T_i)$) and the discrete Cauchy-Schwarz inequality, we are lead to (5.7). As far as (5.8) is concerned, we may proceed in the same way as on the primal mesh, distinguishing however the indices $k \notin \bar{\Gamma}_D$ and the indices $k \in \bar{\Gamma}_D$. Indeed, for $k \notin \bar{\Gamma}_D$, we have chosen Φ_k^P as the mean-value of $\hat{\Phi}$ over P_k , and we may follow the above considerations to obtain

$$(5.16) \qquad \left| \sum_{k \notin \bar{\Gamma}_D} \int_{P_k} f\left(\hat{\Phi} - \Phi_k^P\right) (\mathbf{x}) d\mathbf{x} \right| \leq osc(f, P, \Omega) \left\| \nabla \hat{\Phi} \right\|_{L^2(\Omega \setminus \Omega_D^P)},$$

where $\Omega_D^P = \bigcup_{k \in \bar{\Gamma}_D} P_k$. On the other hand, when $k \in \bar{\Gamma}_D$, we have chosen Φ_k^P equal to 0 (see (4.6)). By definition, the associated dual cells P_k have a part of their boundary located on Γ_D , on which $\hat{\Phi}$ vanishes. We may thus apply formula (5.4) and Cauchy-Schwarz inequalities to obtain

(5.17)
$$\left| \sum_{k \in \bar{\Gamma}_D} \int_{P_k} f\left(\hat{\Phi} - \Phi_k^P\right) (\mathbf{x}) d\mathbf{x} \right| \le str(f, P, \Gamma_D, \Omega) \left\| \nabla \hat{\Phi} \right\|_{L^2(\Omega_D^P)}.$$

Inequalities (5.16) and (5.17) lead to (5.8). As far as (5.9) is concerned, since Φ_j has been chosen as the mean-value of $\hat{\Phi}$ over A_j , the function $\hat{\Phi} - \tilde{\Phi}_j$ has a vanishing mean-value over A_j , which is an edge of the triangle D_j . Thus, the Cauchy-Schwarz inequality over A_j , inequality (5.5) and the discrete Cauchy-Schwarz inequality lead to (5.9). Inequality (5.10) is obtained like (5.9). \square

Remark 5.8. The quantities (5.11) to (5.15) are HOT as soon as $f \in H^{\alpha}(\Omega)$ with $\alpha > 0$, and as soon as g (resp. t) belongs to $H^{1/2+\varepsilon}(\Gamma_N)$ (resp. to $H^{1/2+\varepsilon}(\Gamma_D)$) with $\varepsilon > 0$. Indeed, in that case, $\|f - \bar{f}_i^T\|_{L^2(T_i)}$ is of order $(h_i^T)^{\min(1,\alpha)} \|f\|_{H^{\alpha}(T_i)}$, which ensures that $osc(f, T, \Omega)$ is of order $h^{1+\min(1,\alpha)}$. This is also the case for the term (5.12). Moreover, $str(f, P, \Gamma_D, \Omega)$ is of order $Ch \|f\|_{L^2(\Omega_D^P)}$. Since Ω_D^P is the union of those of the dual cells whose associated vertex S_k lies on $\bar{\Gamma}_D$, it is included in a stripe whose width is h along Γ_D . Applying Ilin's inequality (see, e.g., [9]), then $\|f\|_{L^2(\Omega_D^P)}$ is of order $h^{\min(1/2,\alpha)}$, which ensures that $str(f, P, \Gamma_D, \Omega)$ is of order $h^{1+\min(1/2,\alpha)}$. Finally, $\|g - \bar{g}_j\|_{L^2(A_j)}$ (resp. $\|t - \bar{t}_j\|_{L^2(A_j)}$) is of order $1/2 + \varepsilon$, and thus $osc(g, \Gamma_N)$ (resp. $osc(t, \Gamma_D)$) will be of order $1 + \varepsilon$ under the condition that the quantity $\frac{\text{diam}^2(D_j)}{|D_j|}$ is bounded independently of h on the whole boundary Γ .

5.3. Bounds for the main terms. PROPOSITION 5.9. For any primal cell T_i and any dual cell P_k such that $T_i \cap P_k \neq \emptyset$, let $s = [G_iS_k]$ and $t_{ik,1}$ and $t_{ik,2}$ be the triangles defined in Fig. 5.1 such that $t_{ik,1} \cup t_{ik,2} = T_i \cap P_k$. Let $\rho_{ik,\alpha}$ be the distance from s to the vertex of $t_{ik,\alpha}$ opposite to s and $\sigma_{ik,\alpha}$ be the length of the longest among the two other edges of $t_{ik,\alpha}$. $C(T_i)$ is the constant that appears in (5.3). For any strictly positive μ , μ_i and μ'_i , let us define

(5.18)
$$C_s(\mu) = \frac{\left(1 + \sqrt{1 + \frac{\sigma_{ik,1}^2}{\mu}}\right) \left(1 + \sqrt{1 + \frac{\sigma_{ik,2}^2}{\mu}}\right)}{\left(1 + \sqrt{1 + \frac{\sigma_{ik,1}^2}{\mu}}\right) \rho_{ik,2} + \left(1 + \sqrt{1 + \frac{\sigma_{ik,2}^2}{\mu}}\right) \rho_{ik,1}}$$

(5.19)
$$\chi_i(\mu) = (C(T_i)h_i^T)^2 + \mu$$

(5.20)
$$\left(\eta_{i}^{T}(\mu_{i})\right)^{2} = \chi_{i}(\mu_{i}) \sum_{s \in \mathring{T}_{i}} C_{s}(\mu_{i}) \left\| \left[\nabla_{h} \phi_{h} \cdot \mathbf{n}_{s}\right]_{s} \right\|_{L^{2}(s)}^{2} \text{ and } \left(\eta^{T}\right)^{2} = \sum_{i} \left(\eta_{i}^{T}\right)^{2}$$

$$(5.21) \left({\eta'}_{i}^{T}(\mu'_{i}) \right)^{2} = \chi_{i}(\mu'_{i}) \sum_{s \in \mathring{T}_{i}} C_{s}(\mu'_{i}) \left\| \left[\nabla_{h} \phi_{h} \cdot \boldsymbol{\tau}_{s} \right]_{s} \right\|_{L^{2}(s)}^{2} \text{ and } \left({\eta'}^{T} \right)^{2} = \sum_{i} \left({\eta'}_{i}^{T} \right)^{2}.$$

Then, for any set $(\mu_i)_{i\in[1,I]}$ in $(\mathbb{R}^+_*)^I$ and any set $(\mu_i')_{i\in[1,I]}$ in $(\mathbb{R}^+_*)^I$, there holds

$$(5.22) \qquad \left| \sum_{i \in [1,I]} \sum_{s \in \mathring{T}_i} \int_s \left[\nabla_h \phi_h \cdot \mathbf{n}_s \right]_s \left(\hat{\Phi} - \Phi_i^T \right) (\sigma) \, d\sigma \right| \leq \eta^T \left\| \nabla \hat{\Phi} \right\|_{L^2(\Omega)},$$

$$(5.23) \qquad \left| \sum_{i \in [1,I]} \sum_{s \in \mathring{T}_{i}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \boldsymbol{\tau}_{s} \right]_{s} \left(\hat{\Psi} - \Psi_{i}^{T} \right) \left(\sigma \right) d\sigma \right| \leq {\eta'}^{T} \left\| \nabla \hat{\Psi} \right\|_{L^{2}(\Omega)}.$$

Proof. We shall only give the proof of (5.22), since the proof of (5.23) exactly follows the same lines. By application of the Cauchy-Schwarz inequality on each of the edges $s \in \stackrel{\circ}{T}_i$, and by the weighted discrete Cauchy-Schwarz inequality, we obtain for any set of strictly positive real-valued numbers C_s^T

$$\left| \sum_{s \in \mathring{T}_{i}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \mathbf{n}_{s} \right]_{s} \left(\hat{\Phi} - \Phi_{i}^{T} \right) (\sigma) d\sigma \right| \leq$$

$$(5.24) \qquad \left(\sum_{s \in \mathring{T}_{i}} C_{s}^{T} \left\| \left[\nabla_{h} \phi_{h} \cdot \mathbf{n}_{s} \right]_{s} \right\|_{L^{2}(s)}^{2} \right)^{1/2} \left(\sum_{s \in \mathring{T}_{i}} \frac{1}{C_{s}^{T}} \left\| \hat{\Phi} - \Phi_{i}^{T} \right\|_{L^{2}(s)}^{2} \right)^{1/2}.$$

Now, for each segment s, we may apply the trace inequality (5.6) on each of the two triangles $t_{ik,1}$ and $t_{ik,2}$ and we may write, for $\alpha \in \{1;2\}$ and for all strictly positive $\varepsilon_{ik,\alpha}$, with $C_{1,s,\alpha} = \frac{(2+\varepsilon_{ik,\alpha}^{-2})}{\rho_{ik,\alpha}}$ and $C_{2,s,\alpha} = \frac{\varepsilon_{ik,\alpha}^2 \sigma_{ik,\alpha}^2}{\rho_{ik,\alpha}}$

$$(5.25) \qquad \left\| \hat{\Phi} - \Phi_i^T \right\|_{L^2(s)}^2 \le C_{1,s,\alpha} \left\| \hat{\Phi} - \Phi_i^T \right\|_{L^2(t_{ik,\alpha})}^2 + C_{2,s,\alpha} \left\| \nabla \hat{\Phi} \right\|_{L^2(t_{ik,\alpha})}^2.$$

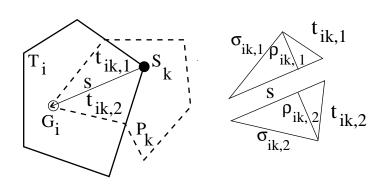


Fig. 5.1. For each primal cell T_i and each vertex S_k of T_i , $T_i \cap P_k$ is split in two triangles $t_{ik,1}$ and $t_{ik,2}$.

For each $s \in T_i$, let κ_s be a real-valued number between 0 and 1. A convex combination of (5.25) with weights κ_s for $\alpha = 1$ and $(1 - \kappa_s)$ for $\alpha = 2$ leads to

$$\begin{split} \sum_{s \in \mathring{T}_{i}} \frac{1}{C_{s}^{T}} \left\| \hat{\Phi} - \Phi_{i}^{T} \right\|_{L^{2}(s)}^{2} &\leq \sum_{s \in \mathring{T}_{i}} \left[\frac{\kappa_{s}}{C_{s}^{T}} \left(C_{1,s,1} \left\| \hat{\Phi} - \Phi_{i}^{T} \right\|_{L^{2}(t_{ik,1})}^{2} + C_{2,s,1} \left\| \nabla \hat{\Phi} \right\|_{L^{2}(t_{ik,1})}^{2} \right) \right. \\ &+ \frac{\left(1 - \kappa_{s} \right)}{C_{s}^{T}} \left(C_{1,s,2} \left\| \hat{\Phi} - \Phi_{i}^{T} \right\|_{L^{2}(t_{ik,2})}^{2} + C_{2,s,2} \left\| \nabla \hat{\Phi} \right\|_{L^{2}(t_{ik,2})}^{2} \right) \right]. \end{split}$$

Now, we wish to give an equal weight to the various contributions of the triangles $t_{ik,\alpha}$ in the above sum, in order to sum them up into a norm over T_i . This may be obtained in the following way: let μ_i be fixed in T_i independently of s. For each $s \in T_i$ and for $\alpha \in \{1, 2\}$, let us choose $\varepsilon_{ik,\alpha}$ so that

$$(5.26) \ \varepsilon_{ik,\alpha}^2 = \frac{\mu_i + \sqrt{\mu_i^2 + \mu_i \sigma_{ik,\alpha}^2}}{\sigma_{ik,\alpha}^2} \Longleftrightarrow C_{2,s,\alpha} = \mu_i C_{1,s,\alpha} \ , \ \forall s \in \overset{\circ}{T}_i \ , \ \forall \alpha \in \{1;2\},$$

and then κ_s and C_s^T such that $\kappa_s C_{1,s,1} = (1 - \kappa_s) C_{1,s,2} = C_s^T$. It is readily checked that the definition of C_s by (5.18) lead to $\kappa_s C_{1,s,1} = (1 - \kappa_s) C_{1,s,2} = C_s^T = C_s(\mu_i)$. Then, there holds, with the application of (5.3)

$$\sum_{s \in \mathring{T}_{i}} \frac{1}{C_{s}^{T}} \left\| \hat{\Phi} - \Phi_{i}^{T} \right\|_{L^{2}(s)}^{2} \leq \sum_{s \in \mathring{T}_{i}} \sum_{\alpha \in \{1;2\}} \left(\left\| \hat{\Phi} - \Phi_{i}^{T} \right\|_{L^{2}(t_{ik,\alpha})}^{2} + \mu_{i} \left\| \nabla \hat{\Phi} \right\|_{L^{2}(t_{ik,\alpha})}^{2} \right) \\
\leq \left\| \hat{\Phi} - \Phi_{i}^{T} \right\|_{L^{2}(T_{i})}^{2} + \mu_{i} \left\| \nabla \hat{\Phi} \right\|_{L^{2}(T_{i})}^{2} \\
\leq \left[\left(C(T_{i}) h_{i}^{T} \right)^{2} + \mu_{i} \right] \left\| \nabla \hat{\Phi} \right\|_{L^{2}(T_{i})}^{2} .$$
(5.27)

Plugging (5.27) into (5.24) and applying the discrete Cauchy-Schwarz inequality leads to (5.22). \Box

REMARK 5.10. Since we may freely choose μ_i in Prop. 5.9, we shall pick up the value of μ_i which minimizes the quantity $\eta_i^T(\mu_i)$ in (5.20) in order to obtain

the best possible bound in (5.22). This minimization is performed numerically when we effectively compute the estimators. However, we may already get an idea of the behaviour of this quantity by bounding $\min_{\mu_i>0} \eta_i^T(\mu_i)$ by $\eta_i^T(\left(h_i^T\right)^2)$, for example. By definition of $\sigma_{ik,\alpha}$, this length is lower than the diameter of T_i , which implies

(5.28)
$$C_s\left(\left(h_i^T\right)^2\right) \le \frac{(1+\sqrt{2})^2}{2(\rho_{ik,1}+\rho_{ik,2})}.$$

Under the hypothesis that the ratios $\frac{\rho_{ik,\alpha}}{h_i^T}$ are all bounded by below by the same constant which does not depend on the mesh, we obtain the following bound

$$\min_{\mu_i > 0} \eta_i^T(\mu_i) \le K h_i^T \sum_{s \in \mathring{T}_i} \left\| \left[\nabla_h \phi_h \cdot \mathbf{n}_s \right]_s \right\|_{L^2(s)}^2,$$

where the constant K does not depend on the mesh. The same remark holds for the choice of μ'_i .

We may proceed in the same way on dual cells, but we have to distinguish those dual cells whose boundary does not intersect Γ_D (resp. Γ_N), for which we have chosen Φ_k^P by formula (5.1) (resp. Ψ_k^P by (5.2)), and for which we may thus apply (5.3), and those whose boundary intersects Γ_D (resp. Γ_N), for which we have to apply (5.4) since $(\hat{\Phi} - \Phi_k^P)$ (resp. $(\hat{\Psi} - \Psi_k^P)$) vanishes over $\Gamma_D \cap \partial P_k$ (resp. $\Gamma_N \cap \partial P_k$), see Eqs. (4.3) and (4.6) (resp. Eqs. (4.4) and (4.12)). We end up with the following bounds

PROPOSITION 5.11. Let us set the same notations as in proposition 5.9. Let C_s be defined by (5.18). Let $C(P_k)$, $C(P_k, \Gamma_D \cap \partial P_k)$ and $C(P_k, \Gamma_N \cap \partial P_k)$ be the constants involved in (5.3) and (5.4). Let us define for any strictly positive μ_k and μ'_k

(5.29)
$$\chi_k(\mu_k) = \begin{cases} (C(P_k)h_k^P)^2 + \mu_k & \text{if } k \notin \bar{\Gamma}_D \\ C^2(P_k, \Gamma_D \cap \partial P_k) |P_k| + \mu_k & \text{if } k \in \bar{\Gamma}_D \end{cases},$$

(5.30)
$$\chi_k'(\mu_k') = \begin{cases} \left(C(P_k) h_k^P \right)^2 + \mu_k' & \text{if } k \notin \bar{\Gamma}_N \\ C^2(P_k, \Gamma_N \cap \partial P_k) |P_k| + \mu_k' & \text{if } k \in \bar{\Gamma}_N \end{cases}$$

$$(5.31) \left(\eta_{k}^{P}(\mu_{k})\right)^{2} = \chi_{k}(\mu_{k}) \sum_{s \in \mathring{P}_{h}} C_{s}(\mu_{k}) \left\| \left[\nabla_{h} \phi_{h} \cdot \mathbf{n}_{s}\right]_{s} \right\|_{L^{2}(s)}^{2} \text{ and } \left(\eta^{P}\right)^{2} = \sum_{k} \left(\eta_{k}^{P}\right)^{2},$$

$$(5.32) \Big({\eta'}_k^P(\mu_k') \Big)^2 = \chi_k'(\mu_k') \sum_{s \in \mathring{P}_k} C_s(\mu_k') \left\| \left[\nabla_h \phi_h \cdot \boldsymbol{\tau}_s \right]_s \right\|_{L^2(s)}^2 \ and \ \left({\eta'}^P \right)^2 = \sum_k \left({\eta'}_k^P \right)^2.$$

Then, for any set $(\mu_k)_{k\in[1,K]}$ in $(\mathbb{R}_*^+)^K$ and any set $(\mu'_k)_{k\in[1,K]}$ in $(\mathbb{R}_*^+)^K$, there holds

$$(5.33) \qquad \left| \sum_{k \in [1,K]} \sum_{s \subset \mathring{\mathcal{P}}_{h}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \mathbf{n}_{s} \right]_{s} \left(\hat{\Phi} - \Phi_{k}^{P} \right) \left(\sigma \right) d\sigma \right| \leq \eta^{P} \left\| \nabla \hat{\Phi} \right\|_{L^{2}(\Omega)},$$

$$(5.34) \qquad \left| \sum_{k \in [1,K]} \sum_{s \subset \mathring{P}_{k}} \int_{s} \left[\nabla_{h} \phi_{h} \cdot \boldsymbol{\tau}_{s} \right]_{s} \left(\hat{\Psi} - \Psi_{k}^{P} \right) \left(\sigma \right) d\sigma \right| \leq \eta'^{P} \left\| \nabla \hat{\Psi} \right\|_{L^{2}(\Omega)}.$$

Now, gathering (4.5), (4.7), (4.23), (5.7) to (5.10), (5.22)–(5.23) and (5.33)–(5.34) we obtain the following fully computable *a posteriori* error bound

THEOREM 5.12. Let e be defined by (4.2), and let the definitions (5.11)–(5.15), (5.20)–(5.21) and (5.31)–(5.32) hold. Then

$$(5.35) \qquad e \leq \frac{1}{2} \left(-\left[osc\left(f, T, \Omega\right) + \left(osc^{2}(f, P, \Omega) + str^{2}(f, P, \Gamma_{D}, \Omega) \right)^{1/2} \right. \\ \left. + \left[2osc(g, A, \Gamma_{N}) + \eta^{T} + \eta^{P} \right]^{2} + \left[2osc(t, A, \Gamma_{D}) + \eta^{\prime T} + \eta^{\prime P} \right]^{2} \right)^{1/2}.$$

6. Efficiency of the estimators. Since the jumps of $\nabla_h \phi_h$ through the common edge of two neighboring diamond-cells are involved in the estimators η_i^T, \dots , we shall work in the neighborhood of this common edge in each T_i , and use functions with a support included in the triangles $t_{ik,\alpha}$, with $\alpha = 1$ or 2, defined in Figure 5.1. Since we consider a fixed s (i.e. a fixed couple ik) in what follows, we shall simplify the notations into t_1 and t_2 . For any triangle t in $\{t_1, t_2\}$, we shall denote by $\lambda_{t,\beta}$ the barycentric coordinates associated with the three vertices of t, with $\beta \in \{1, 2, 3\}$. Moreover, we shall suppose that the vertices of t_1 and t_2 are locally numbered so that the two nodes of the edge s are the vertices 1 and 2 of each of the triangles t_1 and t_2 .

Definition 6.1. We define the following bubble functions

(6.1)
$$b_t = 27\lambda_{t,1}\lambda_{t,2}\lambda_{t,3} \text{ for } t = t_1 \text{ or } t = t_2,$$

$$(6.2) b_s = \begin{cases} 4\lambda_{t_{\alpha},1}\lambda_{t_{\alpha},2} & on & t_{\alpha}, \ \alpha \in \{1;2\} \\ 0 & elsewhere \end{cases}$$

There holds $\omega_t := supp(b_t) \subset t$ and $\omega_s := supp(b_s) = T_i \cap P_k = t_1 \cup t_2$. The following propositions are given, for example, in [27].

Proposition 6.2. There holds

$$(6.3) 0 \le b_t \le 1 , \ 0 \le b_s \le 1.$$

(6.4)
$$\int_{s} b_{s}(\sigma)d\sigma = \frac{2}{3}|s|.$$

PROPOSITION 6.3. There exists a constant C > 0 only depending on the minimal angle in the couple (t_1, t_2) such that, for $t = t_1$ or $t = t_2$ and $h_t = \text{diam}(t)$

(6.5)
$$\frac{1}{C}h_t^2 \le \int_t b_t(\mathbf{x})d\mathbf{x} = \frac{9}{20}|t| \le C h_t^2,$$

(6.6)
$$\frac{1}{C}|s|^2 \le \int_t b_s(\mathbf{x}) d\mathbf{x} = \frac{1}{3}|t| \le C|s|^2,$$

(6.7)
$$\|\nabla b_t\|_{L^2(t)} \le Ch_t^{-1} \|b_t\|_{L^2(t)},$$

(6.8)
$$\|\nabla b_s\|_{L^2(t)} \le C|s|^{-1} \|b_s\|_{L^2(t)}.$$

In order to prove the local efficiency of the error estimator we shall make the following hypothesis.

HYPOTHESIS 6.4. For any primal cell T_i and any dual cell P_k such that $T_i \cap P_k \neq \emptyset$, let $s = [G_i S_k]$ and $t_{ik,1}$ and $t_{ik,2}$ be the triangles defined in Fig. 5.1 such that

 $t_{ik,1} \cup t_{ik,2} = T_i \cap P_k$. Let $h_i^T := \operatorname{diam}(T_i)$, $h_k^P := \operatorname{diam}(P_k)$ and $S_{ik} := |T_i \cap P_k|$. We shall suppose that there exists a constant C independent of the mesh such that

$$(h_i^T)^2 S_{ik}^{-1} \leq C \text{ and } (h_k^P)^2 S_{ik}^{-1} \leq C.$$

HYPOTHESIS 6.5. We suppose that the constants $C(P_k)$, $C(P_k, \Gamma_D \cap \partial P_k)$ and $C(P_k, \Gamma_N \cap \partial P_k)$ that appear in Prop. 5.11 are bounded by a constant C independently of the mesh.

Note that the constants C in Hyp. 6.4 and 6.5 depend on the choice of the points G_i in the primal cells T_i .

HYPOTHESIS 6.6. We shall also suppose that the triangulation of Ω composed of all the triangles $t_{ik,\alpha}$ is regular in the sense that the minimum angles in those triangles are bounded by below independently of the mesh. This implies that the constant C in Prop. 6.3 is bounded by above independently of the mesh.

THEOREM 6.7. For any primal cell T_i , let $h_i^T := \operatorname{diam}(T_i)$ and $(\bar{f})_i^T$ be the meanvalue of f over T_i . Let η_i^T (resp. ${\eta'}_i^T$) be the lower bound of $\eta_i^T(\mu_i)$ defined in (5.20) (resp. ${\eta'}_i^T(\mu_i)$ defined in (5.21)) when μ_i runs over \mathbb{R}_+^+ . For any dual cell P_k , let $h_k^P := \operatorname{diam}(P_k)$ and $(\bar{f})_k^P$ be the mean-value of f over P_k . Let η_k^P (resp. ${\eta'}_k^P$) be the lower bound of $\eta_k^P(\mu_k)$ defined in (5.31) (resp. ${\eta'}_k^P(\mu_k)$ defined in (5.32)) when μ_k runs over \mathbb{R}_+^+ . Under Hyp. 6.4, 6.5 and 6.6, there exists a constant C independent of the mesh such that

(6.9)
$$(\eta_i^T)^2 \le C \left(\left\| \nabla_h \phi_h - \nabla \hat{\phi} \right\|_{L^2(T_i)}^2 + \left(h_i^T \right)^2 \left\| f - (\bar{f})_i^T \right\|_{L^2(T_i)}^2 \right),$$

(6.10)
$$\left(\eta'_{i}^{T} \right)^{2} \leq C \left\| \nabla_{h} \phi_{h} - \nabla \hat{\phi} \right\|_{L^{2}(T_{i})}^{2},$$

$$(6.11) \qquad \left(\eta_k^P\right)^2 \le C \left(\left\| \nabla_h \phi_h - \nabla \hat{\phi} \right\|_{L^2(P_k)}^2 + \left(h_k^P\right)^2 \left\| f - \left(\bar{f}\right)_k^P \right\|_{L^2(P_k)}^2 \right),$$

(6.12)
$$\left(\eta'_{k}^{P} \right)^{2} \leq C \left\| \nabla_{h} \phi_{h} - \nabla \hat{\phi} \right\|_{L^{2}(P_{h})}^{2}.$$

Proof. Let us consider an element T_i of the primal mesh and an edge s in T_i . Let us recall that by definition, such an edge s does not belong to Γ . Let us consider the function $w_s = [\nabla_h \phi_h \cdot \mathbf{n}_s]_s b_s$, where b_s is defined by (6.2). This function belongs to H_D^1 and we may thus apply (4.1), which, taking into account the support of w_s , reduces to

(6.13)
$$\int_{\omega_{s}} \nabla \hat{\phi} \cdot \nabla w_{s}(\mathbf{x}) d\mathbf{x} = \int_{\omega_{s}} f w_{s}(\mathbf{x}) d\mathbf{x}.$$

Moreover, since ϕ_h belongs to $P^1(D_j)$ and w_s vanishes on Γ , there holds

$$\begin{split} \int_{\Omega} \nabla_h \phi_h \cdot \nabla w_s(\mathbf{x}) \, d\mathbf{x} &= \sum_j \int_{D_j} \nabla \phi_h \cdot \nabla w_s(\mathbf{x}) \, d\mathbf{x} \\ &= \sum_j \int_{\partial D_j} \nabla \phi_h \cdot \mathbf{n}_{\partial D_j} w_s(\sigma) \, d\sigma \\ &= \sum_i \sum_{s' \subset \mathring{T}_i} \int_{s'} [\nabla_h \phi_h \cdot \mathbf{n}_{s'}]_{s'} \, w_s(\sigma) \, d\sigma \,. \end{split}$$

But since w_s vanishes on all the other edges $s' \neq s$, there holds, taking into account the definition of w_s and the property (6.4)

$$\int_{\Omega} \nabla_h \phi_h \cdot \nabla w_s(\mathbf{x}) \, d\mathbf{x} = \int_{s} [\nabla_h \phi_h \cdot \mathbf{n}_s]_s \, w_s(\sigma) \, d\sigma = |[\nabla_h \phi_h \cdot \mathbf{n}_s]_s|^2 \int_{s} b_s(\sigma) \, d\sigma$$

$$= \frac{2}{3} |s| |[\nabla_h \phi_h \cdot \mathbf{n}_s]_s|^2 = \frac{2}{3} ||[\nabla_h \phi_h \cdot \mathbf{n}_s]_s||^2_{L^2(s)}.$$

And, taking into account (6.13)

$$\|[\nabla_{h}\phi_{h}\cdot\mathbf{n}_{s}]_{s}\|_{L^{2}(s)}^{2} = \frac{3}{2}\int_{\Omega}\nabla_{h}\phi_{h}\cdot\nabla w_{s}(\mathbf{x})\,d\mathbf{x} = \frac{3}{2}\int_{\omega_{s}}\nabla_{h}\phi_{h}\cdot\nabla w_{s}(\mathbf{x})\,d\mathbf{x}$$

$$= \frac{3}{2}\left[\int_{\omega_{s}}\left(\nabla_{h}\phi_{h}-\nabla\hat{\phi}\right)\cdot\nabla w_{s}(\mathbf{x})\,d\mathbf{x} + \int_{\omega_{s}}f\,w_{s}\left(\mathbf{x}\right)d\mathbf{x}\right]$$

$$\leq \frac{3}{2}\left(\left\|\nabla_{h}\phi_{h}-\nabla\hat{\phi}\right\|_{L^{2}(\omega_{s})}\left\|\nabla w_{s}\right\|_{L^{2}(\omega_{s})} + \left\|f\right\|_{L^{2}(\omega_{s})}\left\|w_{s}\right\|_{L^{2}(\omega_{s})}\right).$$

$$(6.15)$$

Let us now bound $\|\nabla w_s\|_{L^2(\omega_s)}$ and $\|w_s\|_{L^2(\omega_s)}$. There holds, thanks to (6.8),

(6.16)
$$\|\nabla w_s\|_{L^2(\omega_s)} = |[\nabla_h \phi_h \cdot \mathbf{n}_s]_s| \|\nabla b_s\|_{L^2(\omega_s)} \le |[\nabla_h \phi_h \cdot \mathbf{n}_s]_s| C|s|^{-1} \|b_s\|_{L^2(\omega_s)}.$$

(6.17) $\|w_s\|_{L^2(\omega_s)} = |[\nabla_h \phi_h \cdot \mathbf{n}_s]_s| \|b_s\|_{L^2(\omega_s)}.$

So there remains to find a bound for $||b_s||_{L^2(\omega_s)}$. In order to do this, we first infer from (6.3) that $b_s^2 \leq b_s$. This implies, using (6.6),

$$(6.18) \|b_s\|_{L^2(\omega_s)} = \left(\|b_s\|_{L^2(t_1)}^2 + \|b_s\|_{L^2(t_2)}^2\right)^{1/2} \le \left(\int_{t_1 \cup t_2} b_s(\mathbf{x}) d\mathbf{x}\right)^{1/2} \le C |s|.$$

Taking into account that $|[\nabla_h \phi_h \cdot \mathbf{n}_s]_s| = |s|^{-1/2} ||[\nabla_h \phi_h \cdot \mathbf{n}_s]_s||_{L^2(s)}$ and considering (6.15) to (6.18), we obtain

$$(6.19) \| \| [\nabla_h \phi_h \cdot \mathbf{n}_s]_s \|_{L^2(s)} \le C \left(|s|^{-1/2} \| \nabla_h \phi_h - \nabla \hat{\phi} \|_{L^2(\omega_s)} + |s|^{1/2} \| f \|_{L^2(\omega_s)} \right),$$

One usually expresses $\|f\|_{L^2(\omega_s)}$ as a function of $\|\nabla_h \phi_h - \nabla \hat{\phi}\|_{L^2(\omega_s)}$ and of HOT. Let $t = t_1$ or t_2 , and let us denote by \bar{f}_t the mean value of f over t. Then,

(6.20)
$$||f||_{L^{2}(t)} \le ||f - \bar{f}_{t}||_{L^{2}(t)} + ||\bar{f}_{t}||_{L^{2}(t)}.$$

Then, consider $w_t = \bar{f}_t b_t$, where b_t is defined by (6.1). The function w_t belongs to H_D^1 . Thus, taking into account the support of b_t , Eq. (4.1) reduces to

(6.21)
$$\int_{t} \nabla \hat{\phi} \cdot \nabla w_{t}(\mathbf{x}) d\mathbf{x} = \int_{t} f w_{t}(\mathbf{x}) d\mathbf{x}.$$

Moreover, since $\nabla_h \phi_h$ is a constant over each t, and since w_t vanishes on the boundary of t, there holds

(6.22)
$$\int_{t} \nabla_{h} \phi_{h} \cdot \nabla w_{t}(\mathbf{x}) d\mathbf{x} = 0.$$

Since \bar{f}_t is a constant over t, there holds, thanks to (6.5), (6.21) and (6.22),

$$\|\bar{f}_{t}\|_{L^{2}(t)}^{2} = |t| \left(\bar{f}_{t}\right)^{2} = C \left(\bar{f}_{t}\right)^{2} \int_{t} b_{t}(\mathbf{x}) d\mathbf{x} = C \int_{t} \bar{f}_{t} w_{t}(\mathbf{x}) d\mathbf{x}$$

$$= C \left[\int_{t} \left(\bar{f}_{t} - f\right) w_{t}(\mathbf{x}) d\mathbf{x} + \int_{t} f w_{t}(\mathbf{x}) d\mathbf{x} \right]$$

$$= C \left[\int_{t} \left(\bar{f}_{t} - f\right) w_{t}(\mathbf{x}) d\mathbf{x} + \int_{t} \left(\nabla \hat{\phi} - \nabla_{h} \phi_{h}\right) \cdot \nabla w_{t}(\mathbf{x}) d\mathbf{x} \right]$$

$$\leq C \left(\|\bar{f}_{t} - f\|_{L^{2}(t)} \|w_{t}\|_{L^{2}(t)} + \|\nabla \hat{\phi} - \nabla_{h} \phi_{h}\|_{L^{2}(t)} \|\nabla w_{t}\|_{L^{2}(t)} \right),$$

$$(6.23)$$

with C = 20/9 in the above expressions. Let us now bound $||w_t||_{L^2(t)}$ and $||\nabla w_t||_{L^2(t)}$. With (6.7), there holds

(6.24)
$$\|\nabla w_t\|_{L^2(t)} = |\bar{f}_t| \|\nabla b_t\|_{L^2(t)} \le |\bar{f}_t| Ch_t^{-1} \|b_t\|_{L^2(t)}$$

(6.25)
$$||w_t||_{L^2(t)} = |\bar{f}_t| ||b_t||_{L^2(t)}.$$

The remaining term that has to be bounded is $||b_t||_{L^2(t)}$. For this, we first infer from (6.3) that $b_t^2(\mathbf{x}) \leq b_t(\mathbf{x})$ and then

$$(6.26) |\bar{f}_t| \|b_t\|_{L^2(t)} \le |\bar{f}_t| \left(\int_t b_t(\mathbf{x}) d\mathbf{x} \right)^{1/2} \le C |\bar{f}_t| |t|^{1/2} = C \|\bar{f}_t\|_{L^2(t)},$$

in which $C = \sqrt{9/20}$. Combining (6.23)–(6.24)–(6.25)–(6.26), we finally get

$$\|\bar{f}_t\|_{L^2(t)} \le C \left(\|\bar{f}_t - f\|_{L^2(t)} + h_t^{-1} \|\nabla \hat{\phi} - \nabla_h \phi_h\|_{L^2(t)} \right).$$

Since s is an edge of t, there holds $|s| \le h_t$; applying (6.20), we obtain

$$||f||_{L^2(t)} \le C \left(||\bar{f}_t - f||_{L^2(t)} + |s|^{-1} ||\nabla \hat{\phi} - \nabla_h \phi_h||_{L^2(t)} \right).$$

Thus, taking into account that $\omega_s = t_1 \cup t_2$, there holds

$$||f||_{L^{2}(\omega_{s})} \leq ||f||_{L^{2}(t_{1})} + ||f||_{L^{2}(t_{2})}$$

$$\leq C \left(||\bar{f}_{t_{1}} - f||_{L^{2}(t_{1})} + ||\bar{f}_{t_{2}} - f||_{L^{2}(t_{2})} \right)$$

$$+ C|s|^{-1} \left(||\nabla \hat{\phi} - \nabla_{h} \phi_{h}||_{L^{2}(t_{1})} + ||\nabla \hat{\phi} - \nabla_{h} \phi_{h}||_{L^{2}(t_{2})} \right)$$

$$\leq C \left(||\bar{f}_{\omega_{s}} - f||_{L^{2}(\omega_{s})} + C|s|^{-1} ||\nabla \hat{\phi} - \nabla_{h} \phi_{h}||_{L^{2}(\omega_{s})} \right).$$

$$(6.27)$$

In this sequence of inequalities, we have used the fact that \bar{f}_t minimizes $\|c - f\|_{L^2(t)}$ when c runs over \mathbb{R} ; in particular, $\|\bar{f}_t - f\|_{L^2(t)} \leq \|\bar{f}_{\omega_s} - f\|_{L^2(t)}$, where \bar{f}_{ω_s} is the mean value of f over ω_s . Combining (6.19) and (6.27), we obtain

$$(6.28) \| [\nabla_h \phi_h \cdot \mathbf{n}_s]_s \|_{L^2(s)} \le C \left(|s|^{-1/2} \| \nabla_h \phi_h - \nabla \hat{\phi} \|_{L^2(\omega_s)} + |s|^{1/2} \| f - \bar{f}_{\omega_s} \|_{L^2(\omega_s)} \right).$$

By definition, the local estimator η_i^T is bounded by the value of $\eta_i^T \left(\left(h_i^T \right)^2 \right)$. In (5.20), we may bound $C(T_i)$ by $1/\pi$ since the primal cells have been supposed to be convex, and with (5.28) and (6.28), we obtain

$$(\eta_i^T)^2 \le C(h_i^T)^2 \sum_{s \in T_i} \frac{1}{\rho_{ik,1} + \rho_{ik,2}} \left(|s|^{-1} \left\| \nabla_h \phi_h - \nabla \hat{\phi} \right\|_{L^2(\omega_s)}^2 + |s| \left\| f - \bar{f}_{\omega_s} \right\|_{L^2(\omega_s)}^2 \right).$$

Under Hyp. 6.4, and since by definition $S_{ik} = \frac{1}{2}|s| (\rho_{ik,1} + \rho_{ik,2})$ and $|s| \leq h_i^T$, the above inequality leads to (6.9). As far as (6.10) is concerned, let us consider the function $v_s = [\nabla_h \phi_h \cdot \boldsymbol{\tau}_s]_s b_s$. There obviously holds

(6.29)
$$\int_{\Omega} \nabla \hat{\phi} \cdot \nabla \times v_s(\mathbf{x}) \, d\mathbf{x} = \int_{\omega_s} \nabla \hat{\phi} \cdot \nabla \times v_s(\mathbf{x}) \, d\mathbf{x} = 0.$$

Eq. (6.29) and the calculations that previously led to (6.14) may be used to yield

$$\|[\nabla_{h}\phi_{h}\cdot\boldsymbol{\tau}_{s}]_{s}\|_{L^{2}(s)}^{2} = \frac{3}{2}\int_{\omega_{s}}\nabla_{h}\phi_{h}\cdot\nabla\times\boldsymbol{v}_{s}(\mathbf{x})d\mathbf{x} = \frac{3}{2}\int_{\omega_{s}}\left(\nabla_{h}\phi_{h} - \nabla\hat{\phi}\right)\cdot\nabla\times\boldsymbol{v}_{s}(\mathbf{x})d\mathbf{x}$$

$$\leq \frac{3}{2}\left\|\nabla_{h}\phi_{h} - \nabla\hat{\phi}\right\|_{L^{2}(\omega_{s})}\left\|\nabla\boldsymbol{v}_{s}\right\|_{L^{2}(\omega_{s})}.$$

$$(6.30)$$

Just like (6.15) led to (6.19) and then to (6.9), the inequality (6.30) leads to (6.10). The dual inequalities (6.11) and (6.12) may be obtained in the same way. The only difference is in the bounds of χ_k and χ'_k defined by (5.29) and (5.30), where Hyp. 6.5 is used, and where $|P_k|$ is sometimes used in place of $(h_k^P)^2$. But since the cell P_k is star-shaped with respect to S_k , it is included in the ball of radius h_k^P centred on S_k . Thus, there holds $|P_k| \leq \pi \left(h_k^P\right)^2$, which allows us to conclude. \square

Remark 6.8. The second terms in (6.9) and (6.11) are of higher order as soon as f is more regular than $L^2(\Omega)$.

7. Numerical results. We shall now consider two tests; the first has a stiff but regular $(C^{\infty}(\Omega))$ solution, for which a uniform mesh refinement will asymptotically give the optimal order of convergence, which means like O(h), or, equivalently, in $O(N^{-1/2})$, where N is the number of primal cells in the mesh; the second has a less regular solution since it belongs to $H^{1+s}(\Omega)$, with s < 2/3, for which a uniform mesh refinement will asymptotically give a convergence order in $O(h^{2/3})$, which means in $O(N^{-1/3})$. We wish to verify that in the first case, the adaptive strategy will give the same asymptotic order of convergence, but with lower errors, and that, in the second case, we recover the optimal order in $O(N^{-1/2})$. Moreover, we shall be interested in the efficiency of the estimator.

In order to apply a mesh refinement strategy, it is necessary to rewrite the total estimator given by (5.35) into a sum over the primal cells; indeed, it is on the primal mesh that one usually has some kind of control, either through some meshing software or through an appropriate refinement of a coarse mesh. Rewriting (5.35) is an easy task, since we may split each dual cell into its intersections with various primal cells, and since we may assess each boundary term to the primal cell whose boundary includes the considered boundary edge. In the sequel, we shall denote by η_i this aggregated local estimator.

7.1. Adaptivity for a stiff but regular solution. We start with a problem inspired by [15], in which the authors consider the following multiscale problem. Let $\Omega =]-1,1[^2]$ and let us choose the following data (with homogeneous Dirichlet boundary conditions):

$$f = 2k^{2}\pi^{2}\cos(k\pi x)\cos(k\pi y) - 4\eta\chi(r)\exp(1/\varepsilon^{2})\exp[-1/(\varepsilon^{2} - r^{2})]\frac{r^{2} + r^{4} - \varepsilon^{4}}{(\varepsilon^{2} - r^{2})^{4}}$$

with $r = \sqrt{x^2 + y^2}$ and $\chi(r) = 1$ if $r \le \varepsilon$, while $\chi(r) = 0$ if $r > \varepsilon$. we choose k = 1/2, $\eta = 10$ and $\varepsilon = 1/4$. The exact solution $\hat{\phi}$ of this problem is given by

$$\hat{\phi} = \cos(k\pi x)\cos(k\pi y) + \eta \chi(r) \exp(1/\varepsilon^2) \exp[-1/(\varepsilon^2 - r^2)].$$

This solution is thus in $C^{\infty}(\Omega)$, but displays a very strong peak in the neighborhood of (0,0). We shall use a family of meshes with possibly nonconforming square cells. More precisely, like in [15], we consider $\omega = [-1/4, 1/4]^2$ and $\Omega \setminus \omega$ is uniformly meshed with squares of size h, while ω is uniformly meshed with squares of size $h_0 = h/2^p$. For $p \geq 1$, the mesh is thus nonconforming. The mesh corresponding to h = 1/4and $h/h_0 = 4$ is displayed on Fig. 7.1. Then, the following refinement strategy is employed: we start with a conforming coarse mesh $h_0 = h = 1/4$, and for any given employed: we start with a conforming coarse mesh $n_0 - n - 1/4$, and for any given mesh of this family let $\eta_{ext}^2 := \sum_{T_i \subset \Omega \setminus \omega} \eta_i^2$ and $\eta_{int}^2 := \sum_{T_i \subset \omega} \eta_i^2$, and N_{ext} and N_{int} respectively represent the number of primal cells in $\Omega \setminus \omega$ and in ω . We expect the total error to behave like $e \approx C(N_{ext} + N_{int})^{-1/2}$. We may also roughly expect η_{ext} (respectively η_{int}) to behave proportionally to $N_{ext}^{-1/2}$ (resp. $N_{int}^{-1/2}$), so that:

• if we refine ω only, the total error will roughly be $(\eta_{ext}^2 + \eta_{int}^2/4)^{1/2}$ with

- $(N_{ext} + 4N_{int})$ cells.
- if we refine $\Omega \setminus \omega$ only, the total error will roughly be $(\eta_{ext}^2/4 + \eta_{int}^2)^{1/2}$ with $(4N_{ext} + N_{int})$ cells.
- if we refine both ω and $\Omega \setminus \omega$, the total error will roughly be $\frac{1}{2}(\eta_{ext}^2 + \eta_{int}^2)^{1/2}$ with $4(N_{ext} + N_{int})$ cells.

Then, after each computation, we compute $C_i := (\eta_{ext}^2 + \eta_{int}^2/4)^{1/2} (N_{ext} + 4N_{int})^{1/2}$, $C_e := (\eta_{ext}^2/4 + \eta_{int}^2)^{1/2} (4N_{ext} + N_{int})^{1/2}$ and $C_{ie} := (\eta_{ext}^2 + \eta_{int}^2)^{1/2} (N_{ext} + N_{int})^{1/2}$ and the mesh is refined

- in ω only if $C_i = \min(C_i, C_e, C_{ie})$,
- in $\Omega \setminus \omega$ only if $C_e = \min(C_i, C_e, C_{ie})$,
- in both ω and $\Omega \setminus \omega$ if $C_{ie} = \min(C_i, C_e, C_{ie})$.

We present in Figure 7.2 a cloud of points corresponding to the true errors as a function of the total number of primal cells, for all possible choices of couples (h, h_0) (with $h_0 \leq h$) so that the number of primal cells is lower than 70000. We have also plotted the curve corresponding to a uniform mesh refinement $(h = h_0)$ and the curve corresponding to the above described refinement strategy; we remark that the latter curve is always below the cloud of points, and we may thus consider that, at least in the present test, this strategy is optimal. This strategy leads to refine in ω only until $h/h_0 = 16$, with h = 1/4 and then to refine on the whole mesh. Note that this corresponds to the observation in [13], apart from the fact that this mesh refinement is now driven by the error estimator, while in [13] we needed the exact error to perform it! The next observations concern the efficiency of the estimator. In Fig. 7.3, we have plotted all the ratios of the estimators over the true errors for all the meshes used in the previous computations. For these tests, the efficiency of the estimator is mostly around 5, and always between 3.5 and 7. In Fig. 7.4, we have plotted the efficiencies

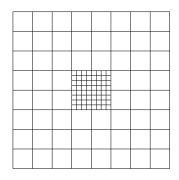


Fig. 7.1. Nonconforming mesh with h = 1/4 and p = 2.

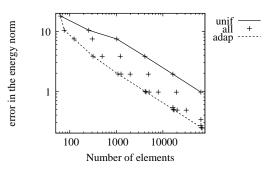


Fig. 7.2. Errors for the multiscale problem for the uniform refinement (upper curve), the adaptive refinement (lower curve) and all other possible meshes.

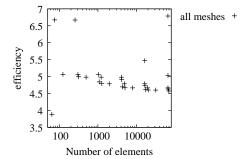


Fig. 7.3. Efficiencies for the multiscale problem.

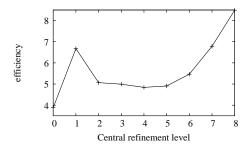
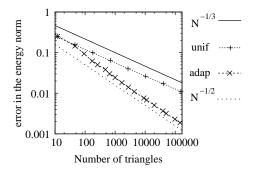


FIG. 7.4. Efficiencies for the multiscale problem as a function of the central refinement ratio p.

of the estimator for a fixed coarse grid h=1/4 and for various refinement ratios, with p up to 8. We remark that the efficiency is rather constant around 5, until p=6, and starts to deteriorate for $p \geq 7$. This is however robust enough for our purposes here, since the optimal p was found to be 4. This deterioration was expected, since it was proved in section 6 that the efficiency of the estimator depends on regularity of the subtriangulation $t_{ik,\alpha}$ (see Figure 5.1). The fact that these triangles degenerate at the boundary between the fine and coarse meshes when p grows larger explains the observed worse efficiency. Note however that, as proved in [13], the a priori error estimation does not degenerate with this refinement ratio.

7.2. Adaptivity for a singular solution. This test case is rather classical. The domain Ω is chosen to be $]-1;1[\times]-1;1[\setminus]0;1[\times]-1;0[$. The exact solution is $\hat{\phi}(r,\theta)=r^{2/3}\sin(2\theta/3)$, expressed in cylindrical coordinates (r,θ) centered on (0,0). We use the Triangle mesh generator described in [26]. On a given mesh, we compute the aggregated estimators η_i and ask to refine a given T_i by a factor 4 in terms of area if $\eta_i \geq (\max_j \eta_j)/2$. The triangle mesh generator will not exactly refine a given T_i into 4 similar sub-triangles, but will arrange so that the areas of the triangles near the former T_i will be lower or equal $|T_i|/4$. In Figure 7.5, we have plotted the curves of the true errors for a uniform and for an adaptive refinement, as a function of the number of triangles in the primal mesh. The curve corresponding to the uniform mesh refinement is, as expected, parallel to the $N^{-1/3}$ curve, while the curve corresponding to the adaptive mesh refinement is parallel to the $N^{-1/2}$ curve, which means the



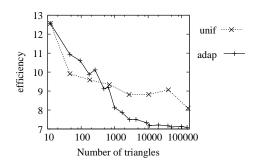


Fig. 7.5. Errors for the singular solution for a uniform and an adaptive refinement.

Fig. 7.6. Efficiencies for the singular solution for a uniform and an adaptive refinement.

optimal convergence is recovered. Finally, we plot in Fig. 7.6 the efficiency curves for the uniform refinement and for the adaptive refinement. The efficiency varies roughly between 10 and 8 (except for the very coarse mesh) in the former case, and seems to tend to 7 in the latter.

8. Conclusion. In this article, we have applied tools inspired from the Finite Element framework to derive a fully computable and efficient error bound for the DDFV method applied to the Laplace equation in two space dimensions. We have applied this theory to the adaptive simulation on nonconforming meshes of a regular but stiff problem, and to the adaptive simulation of a problem with a singular solution. On these tests, the efficiency of the estimator varies most of the time between 5 and 10. Based on new ideas developed by M. Vohralík for example in [31], further work is under progress to obtain an estimator with a better efficiency for more general diffusion equations discretized by the DDFV method.

REFERENCES

- A. AGOUZAL AND F. OUDIN, A posteriori error estimator for finite volume methods, Appl. Math. Comput., 110 (2000), pp. 239–250.
- [2] M. AINSWORTH AND J.T. ODEN, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics, Wiley-Interscience, New York, 2000.
- [3] M. AINSWORTH, Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal., 42 (2005), pp. 2320-2341.
- [4] B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes, Numer. Methods Partial Differ. Equations, 23 (2007), pp. 145–195.
- [5] I. Babuska and T. Strouboulis, The finite element methods and its reliability, Oxford, Clarendon Press, 2001.
- [6] A. Bergam, Z. Mghazli, R. Verfürth, Estimations a posteriori d'un schéma de volumes finis pour un problème non linéaire, Numer. Math., 95 (2003), pp. 599–624.
- [7] C. CARSTENSEN AND S. FUNKEN, Constants in Climent-interpolation error and residual based a posteriori estimates in finite element methods, East-West J. Numer. Math., 8 (2000), pp. 153–175.
- [8] C. CARSTENSEN AND S. FUNKEN, Fully reliable localised error control in the FEM, SIAM J. Sci. Comput., 21 (2000), pp. 1465-1484.
- [9] C. CARSTENSEN, R. LAZAROV AND S. TOMOV, Explicit and averaging a posteriori error estimates for adaptive finite volume methods, SIAM J. Numer. Anal., 42 (2005), pp. 2496–2521.
- [10] Y. COUDIÈRE, J.-P. VILA, P. VILLEDIEU, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, ESAIM:M2AN, 33 (1999), pp. 493–516.
- [11] E. DARI, R. DURAN, C. PADRA AND V. VAMPA, A posteriori error estimators for nonconforming finite element methods, ESAIM:M2AN, 30 (1996), pp. 385–400.

- [12] S. DELCOURTE, K. DOMELEVO AND P. OMNES, A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes, SIAM J. Numer. Anal., 45 (2007), pp. 1142–1174.
- [13] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM:M2AN, 39 (2005), pp. 1203–1249.
- [14] R. EYMARD, T. GALLOUËT, AND R. HERBIN, Finite volume methods, in Ciarlet, P. G. (ed.) et al., Handbook of numerical analysis. Vol. 7. Amsterdam: North-Holland/ Elsevier, 2000, pp. 713–1020.
- [15] R. GLOWINSKI, J. HE, J. RAPPAZ AND J. WAGNER, A multi-domain method for solving numerically multi-scale elliptic problems, C.R. Acad. Sci. Paris, Ser.I, 338 (2004), pp. 741–746.
- [16] R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh, Numer. Methods Partial Differ. Equations, 11 (1995), pp. 165–173.
- [17] F. HERMELINE, A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160 (2000), pp. 481–499.
- [18] F. HERMELINE, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Comput. Methods Appl. Mech. Eng., 192 (2003), pp. 1939–1959.
- [19] R. LAZAROV, S. TOMOV, A posteriori error estimates for finite volume element approximations of convection-diffusion-reaction equations, Comput. Geosci., 6 (2002), pp. 483–503.
- [20] S. NICAISE, A posteriori residual error estimation of a cell-centered finite volume method, C. R. Acad. Sci. Paris, Ser. I, 338 (2004), pp. 419–424.
- [21] S. NICAISE, A posteriori error estimations of some cell-centered finite volume methods, SIAM J. Numer. Anal., 43 (2005), pp. 1481–1503.
- [22] S. NICAISE, A posteriori error estimations of some cell centered finite volume methods for diffusion-convection-reaction problems, SIAM J. Numer. Anal., 44 (2006), pp. 949–978.
- [23] M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations, ESAIM:M2AN, 35 (2001), pp. 355–387.
- [24] M. Ohlberger, Higher order finite volume methods on selfadaptive grids for convection dominated reactive transport problems in porous media, Comput. Vis. Sci., 7 (2004), pp. 41–51.
- [25] M. PLEXOUSAKIS AND G. E. ZOURARIS, On the construction and analysis of high order locally conservative finite volume-type methods for one-dimensional elliptic problems, SIAM J. Numer. Anal., 42 (2004), pp. 1226–1260.
- [26] J. R. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, in Applied Computational Geometry: Towards Geometric Engineering, Ming C. Lin and Dinesh Manocha, editors, Lecture Notes in Computer Science, Vol. 1148, Springer-Verlag, Berlin, 1996, pp. 203-222.
- [27] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Teubner-Wiley, Stuttgart, 1996.
- [28] R. Verfürth, Error estimates for some quasi-interpolation operators, ESAIM:M2AN, 33 (1999), pp. 695–713.
- [29] M. VOHRALÍK, A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal., 45 (2007), pp. 1570– 1599.
- [30] M. VOHRALÍK, A posteriori error estimates for finite volume and mixed finite element discretizations of convection-diffusion-reaction equations, ESAIM Proc., 18 (2007), pp. 57–69, electronic only.
- [31] M. VOHRALÍK, A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization, C. R. Math. Acad. Sci. Paris. Ser. I, 346 (2008), pp. 687–690.
- [32] M. Vohralík, Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, to appear in Numer. Math. (2008), doi:10.1007/s00211-008-0168-4.