Journal Articles Additive Manufacturing Year : 2024

Manufacturing and performances of MnZn ferrite cores with thin walls prepared by paste material extrusion 3D printing

Abstract

The 3D printing technique using micro-extrusion of a paste filled with ferrite powder (Mn,Zn)Fe2O4 and organic additives has been successfully improved to produce sintered samples for studying their magnetic and structural properties. The rheological behaviour of the pastes and the printing parameters have been optimised to obtain parts with regular geometries, in particular by minimising sagging effect during filament deposition. Printing is followed by a debinding and sintering stage, for which the temperature and oxygen partial pressure conditions were adjusted. These conditions enable the densification of the (Mn,Zn)Fe2O4 material in the spinel structure without parasitic phases, with a low grain size dispersion and a relative density of 91%. The core loss has been measured on the 3D printed samples to be 144 mW/cm3 at a frequency of 500 kHz and an induction of 50 mT. This performance is comparable to the nominal value of a part produced by the conventional process. This work paves the way for an advantageous manufacturing method in terms of accessible geometries, while maintaining satisfactory magnetic characteristics
Fichier principal
Vignette du fichier
Manufacturing and performances of MnZn ferrite cores with thin walls.pdf (7.92 Mo) Télécharger le fichier
Origin Publication funded by an institution
Licence

Dates and versions

cea-04850129 , version 1 (19-12-2024)

Licence

Identifiers

Cite

Aziz Zekhnini, Gérard Delette, Anne-Lise Adenot-Engelvin, Olivier Isnard. Manufacturing and performances of MnZn ferrite cores with thin walls prepared by paste material extrusion 3D printing. Additive Manufacturing, 2024, 92, pp.104389. ⟨10.1016/j.addma.2024.104389⟩. ⟨cea-04850129⟩
18 View
8 Download

Altmetric

Share

More