A RBF-FD physics-informed machine learning approach to air pollution source estimation - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Communication Dans Un Congrès Année : 2024

A RBF-FD physics-informed machine learning approach to air pollution source estimation

Didier Georges
Sylvain Leirens

Résumé

In this paper, we propose a source term estimation approach for air pollution monitoring based on a physics-informed machine learning approach using radial basis function- generated finite differences (RBF-FD) approximations, rather than using neural network-based approximations. This approach looks promising for detecting a static pollution source, at a particularly low computing cost and based on a network of fixed or mobile sensors. A 3D case study demonstrates the effectiveness of the approach.
Fichier principal
Vignette du fichier
0024_TuA1-01.pdf (465.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

cea-04718674 , version 1 (02-10-2024)

Licence

Identifiants

  • HAL Id : cea-04718674 , version 1

Citer

Didier Georges, Sylvain Leirens, Roman Lopez-Ferber. A RBF-FD physics-informed machine learning approach to air pollution source estimation. CCA 2024 - 3rd Control Conference Africa, Sep 2024, Balaclava, Mauritius. ⟨cea-04718674⟩
130 Consultations
33 Téléchargements

Partager

More