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Abstract: In this paper, we propose a source term estimation approach for air pollution
monitoring based on a physics-informed machine learning approach using radial basis function-
generated finite differences (RBF-FD) approximations, rather than using neural network-based
approximations. This approach looks promising for detecting a static pollution source, at a
particularly low computing cost and based on a network of fixed or mobile sensors. A 3D case
study demonstrates the effectiveness of the approach.
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1. INTRODUCTION

Air pollution has become a pressing societal and re-
search concern in recent years, given its significant im-
pact on public health, environmental quality, and overall
urban livability (World-Health-Organization (2020)). As
urbanization continues to accelerate globally, the concen-
tration of pollutants in urban atmospheres rises, pos-
ing serious threats to human health and well-being, as
well as ecosystems and infrastructure (United-Nations-
Environment-Programme (2019)).

The identification of pollution sources in urban areas
is vital for several reasons. Firstly, urban populations
are particularly vulnerable to the adverse effects of air
pollution due to the high density of emissions sources,
such as vehicles, industrial facilities, and residential heat-
ing systems. Exposure to pollutants like particulate mat-
ter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2),
volatile organic compounds (VOC), and ozone (O3) has
been linked to a myriad of health issues, including respira-
tory and cardiovascular diseases, cancer, and neurological
disorders. Secondly, urban air pollution not only affects
human health but also has far-reaching environmental
implications. Pollutants released into the atmosphere can
undergo complex chemical reactions, leading to the for-
mation of secondary pollutants and exacerbating issues
like smog, acid rain, and ozone depletion (United-Nations-
Environment-Programme (2019)). Additionally, airborne
contaminants can deposit onto surfaces, contaminating
soil, water bodies, and vegetation, and disrupting ecosys-
tems and biodiversity. Furthermore, air pollution in urban
areas contributes significantly to climate change, as certain
pollutants, such as carbon dioxide (CO2) and methane
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(CH4), act as greenhouse gases, trapping heat in the at-
mosphere and exacerbating global warming. The detection
and mitigation of atmospheric pollution sources in urban
environments have thus emerged as crucial endeavors,
garnering substantial attention from both researchers and
policymakers.

In recent years, advancements in sensor technologies, data
analytics, and modeling techniques have revolutionized
the field of atmospheric pollution detection and monitor-
ing in urban environments. Traditional monitoring net-
works, comprised of fixed-site monitoring stations, pro-
vide valuable data but are limited in spatial coverage
and resolution. To overcome these limitations, researchers
have increasingly turned to innovative approaches, such
as mobile monitoring platforms, unmanned aerial vehicles
(UAV), and low-cost sensor networks, to capture fine-scale
variations in pollutant concentrations across urban areas.

Source term estimation (STE) has been extensively stud-
ied in the literature, especially in highly constrained ur-
ban areas. Many authors studied model-based estimation
methods to perform urban STE such as ensemble Kalman
filter Defforge et al. (2021), particle filter Septier et al.
(2020), or variational calculus Kumar et al. (2015), but
at the price of computationally expensive models requir-
ing hours of computation. At the same time, the use of
machine learning techniques in air pollution monitoring is
growing exponentially (Li et al. (2023)).

Among numerical approaches for solving partial differen-
tial equations (PDE), the RBF-FD approach has proven to
be effective in the past 10 years. Flyer et al. first developed
a RBF-FD method for solving shallow water equations de-
fined on spherical domains and showed that the RBF-FD
method can be faster than discontinuous Galerkin methods
with equivalent accuracy (Flyer et al. (2012)). Various ap-



plications in geosciences (Mathews et al. (2022)), biomed-
ical engineering (Tominec et al. (2022)), and epidemiology
(Oliver et al. (2022)) can be found in the recent literature.

In Lopez-Ferber et al. (2024), the authors propose to use
the RBF-FD approach to solve direct and adjoint-based
STE problems using a 3D advection-diffusion PDE in
steady state in an heterogeneous domain. In this paper,
we propose and evaluate on a simple case study a differ-
ent STE approach based on a physics-informed machine
learning (PIML) approach using RBF-FD approximations,
rather than using neural network-based approximations
(Raissi et al. (2019)). This approach looks promising for
detecting a static pollution source, at a particularly low
computing cost and based on a network of fixed or mobile
Sensors.

The paper is now organized as follows: Section 2 is devoted
to air pollution modelling. Section 3 presents the RBF-
FD PIML approach proposed in the paper. Section 4
is dedicated to a STE approach as an extension of the
RBF-FD PIML formulation described in Section 3. A case
study is presented in Section 5, and Section 6 sums up
conclusions and perspectives.

2. AIR POLLUTION MODELLING

At the urban scale, air pollution modeling usually relies
on two main assumptions:

(1) The fluid (air) is considered as incrompressible.
(2) The air density is not locally changed by the pollu-
tant.

Consequently pollutant dispersion can be well represented
by Navier-Stokes equations coupled with an advection-
diffusion partial differential equation (ADPDE).

In this paper, additional realistic assumptions are made:

e The mean wind velocity and mean diffusion fields are
assumed to be known (for example, from meteorolog-
ical data or models).

e The source term is considered stationary in time, and
emits long enough to lead to a steady state.

e Pollutants are considered passive in this study (e.g.
particle matter such as PM2.5 and PM10), without
any further chemical reaction or photo-reaction.

Under these assumptions, the pollutant dispersion can be
modelled by a 3D stationary ADPDE including a source
term (see Zannetti (1990)) as follows:

3
> Uil) 9, u( Zagl )0 u(z)) + s(2), (1)
i=1
vV €,
Vu(z) -v(z) =0,z €Ty, u(z) =0,z €Ty, (2)
where x = (£1,&2,§3) denotes the vector of spatial

Cartesian coordinates, U(x) = (Uy(z), Usz(x), Us(x)) and
K(z) = (Ki(z),Ka(x),K3(z)) denote the mean wind
velocity and the mean diffusion fields respectively, u(z)
[gm™] is the pollutant concentration, s(z) is the pollutant
source term [gm™s7!], and v(x) denotes the normal vector
pointing towards the exterior of the boundary. J¢, is the
partial derivative w.r.t. ;, while V is the spatial gradient
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in R3. Two kinds of boundary conditions are considered:
Dirichlet conditions (u(z) = 0) and Neumann conditions

(Vu(z) -v(z) =0).
Equations (1)-(2) can be written in operator form as:
Lu(zr) = s(z),z € Q, Bu(x) =0,z € dq, (3)

where L is the differential operator'

L= ZU )0g; — Z% )0e,) (4)

defined on the domaln Q, and B is the boundary condition
operator defined on the boundary domain dq =T UT,,.

3. RBF-FD PIML FOR SOLVING ADPDE
3.1 RBF-FD approxzimation

Radial basis functions (RBF) are known to exhibit ex-
cellent interpolation properties in high-dimensional space
(see e.g. Iske (2004); Fornberg and Flyer (2015)). A con-
tinuous function f : y € Q@ C R® — f(y) € R can
be locally approximated in by a set of N, RBFs ¢
centered on a finite set of nodes (called center points)
X = {‘ri}izl,-n,NI C Q. Let f denote the approximation
of f at any y € O, based on N, radial basis functions as:
N
=Y @by — ) =
i=1
where the a;’s are the coordinates of the function approx-
imate in the basis of RBF. || - || denotes the Euclidean
norm. a is the vector of the a;’s and ®(y) = (¢(||ly —

zill) -+ oy — 2w, [D)-

The Gaussian RBF, (inverse) multiquadric RBF, and
polyharmonic splines (PHS) are among the most popular
RBFs. In this work, PHS have been used, since they do not
require the adjustment of a shape parameter to optimize
the conditioning of the interpolation, unlike the Gaussian
or multiquadric RBF (Fornberg and Flyer (2015)).

The PHS are defined as follows:
oly) =71 k> 1, with r = [ly — z]]. (6)

However, very good results have been also obtained with
the inverse multiquadric:
1

= e

with an appropriate choice of shape parameter e.

f) d(y)a, VyeQ, (5

(7)

In order to improve accuracy, polynomials may be intro-
duced in the PHS approximation along with coordinates

Ajl
N, m
= Zamﬁ(lly—mi\l) +Z>\jpj(y), (8)

NZ?
associated to matching constraints Zaipj(wi) = 0, for
i=1
j=1,--- m. However, in the case study presented in Sec-
tion 5, we have not observed any significant improvement
in accuracy if such polynomials are introduced.

We now assume that the values of function f at each center
point z;, f(x;), i =1,---, N, are available. The vector of



the f(z;)’s is denoted as f. It follows that the vector a of

coordinates a;, i = 1,--- , N, is given by:
a=A"f, (9)
where

¢(lzr —aall) -+ @ (ller —an, )

A= (10)

o(lan, —zl) - (lzw, — 2w, )

Using (9), approximation (5) can be directly reformulated
as a function of vector f:

fy)=d(mAf, Vyeq,

More generally, this approach can be used to locally ap-
proximate any linear differential operator, and in partic-
ular the advection-diffusion and boundary condition op-
erators £ and B considered in this paper, using a simple
partial derivative calculation:

(11)

Lu(y) = L(2(y)) A"y, Yy €Q,
Bu(y) = B(®(y) A~ u,, Vy € 09, (13
where u, denotes the vector of the wu(z;)’s, L(®(y))

y
(L(@(ly = 21l)), -+ L(o(|ly — xn,[])) and B(®(y)) =
(B(o(lly — 1)), -+, B(¢(lly — zn, 1))

If the set of the centers x;, i = 1,---, N, is a stencil,
denoted as Sy, i.e. the set of N, nearest neighbors of any
y € ), chosen in a larger set of centers, the approach
is called RBF-generated finite difference approximation
(RBF-FD), since each operator approximation is locally
defined as a function of N, values u(z;) in w,. In order
to build each stencil Sy, a set of center points, denoted
as X, has to be defined on Q U 99Q. Quasi-random (low-
discrepancy) sequences such as Sobol or Halton sequences
are very good candidates for the definition of X, since they
are known to provide evenly filling of the spatial domain
and are optimal for the approximation of integrals in the
Monte-Carlo sense (Morokoff and Caflisch (1994)).

It should be pointed out that, due to their local nature, the
finite-dimensional RBF approximations of the operators £
and B lead to sparse vectors or matrices, since they only
involve N, u(zx;), values of u(x) at the nearest neighbors
xz; € Sy C X of y. Thus, the degree of sparsity is directly
governed by the number of neighbors, V.

—
—_
[\
= =

In what follows, we adopt the following notations for the
operator approximations obtained from (12) and (13):

Lu(y) =~V (y)u, Yy € €, (14)
Bu(y) = ¥p(y)u, Yy € 0L, (15)
where ¥ (y) and ¥ g(y) are the sparse row-vectors defined
as the finite-dimensional approximation of £ and B respec-
tively, and u denotes the vector of the u(z;), Va; € X. The
cardinality of the set of non-zero elements of each of the

matrices ¥y, (y) and Up(y) is exactly N, = card(S,), with
N, < card(X).

In the same way, it is also possible to define a sparse

interpolation operator of u(x):

u(y) = ¥(y)u, Vy € Q, (16)
where U(y) is the sparse row-vector obtained from the
local approximations (11) obtained from the stencil S,,.
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8.2 Formulation of the RBF-FD PIML solver

Following the approach proposed by Tominec and Breznik
(2021) (also denoted as LS-RBF-FD) and applied to the
ADPDE problem (1)-(2), we search for an approximate
solution of the ADPDE problem for a given source distri-
bution s(z), based on the RBF-FD approach, and using
residual minimization:

Nq
min — UL (yr)u — s(y)|?
iy 2 e (o)

a Noag
+— \I/Bykg2 a >0, 17
N 2o V() a7)
where the yi’s belongs to two subsets Yo and Ysq gener-
ated using quasi-random sequences defined on 2 and 01,
respectively, with Ng = card(Yq) and Ngg = card(Yaq).
« is a weighting coefficient used to give more or less weight

to the satisfaction of the boundary conditions.

If card(Yq) + card(Yaq) > card(X), (17) is an over-
determined least-squares optimization problem that can
be compactly reformulated as follows:

w = argmin || Dv — f||?, (18)
with
LD 1
VNg © ——=s(Ya)
D= = Ve . (19)

Q
—D, 0
V' Noa o

where Dq and Dy denotes the sparse matrices built with
the Wy (yr)’s for all yp € Yu and the Up(yg)’s for all
yr € Yaq, respectively. s(Yq) denotes the vector of the
s(yk), for all yx € Yo.

Since the problem (18) is linear-quadratic, provided D has
full rank, a unique explicit solution is given by:

u=DTs, (20)
where DT = (DT D)~ DT is the left pseudo-inverse of D.
In practice, the solution w can be effectively computed by
using an iterative least square solver optimized for sparse

problems, such as the algorithm proposed in Paige and
Saunders (1982).

Remarks. We call this approach RBF-FD PIML because
it is closely related to the physics-informed neural network
(PINN) approach initially proposed in Raissi et al. (2019).
However, using a neural network requires the solution of
a (often under-determined) nonlinear regression problem
with a potentially large set of parameters (weights and
biases) and without a clear knowledge of the most appro-
priate network architecture needed. Instead, the RBF-FD
approach is based on a limited set of parameters, which are
here the solution of the ADPDE at the center points in X.
Furthermore, the formulation of the PIML problem (17) is
easy and the precision can be adjusted by increasing the
size of the stencils N,, and the number of points defined
in X and Y (hyper-parameters). When dealing with linear
PDEs, the key point is not to introduce the center loca-
tions as part of the parameter set, which would otherwise
have led to a non-linear regression problem instead of a
linear one. Consequently, an explicit solution (20) can be

3



obtained using the RBF-FD PIML approach. In fact, this
approach can be seen as based on locally defined single-
layer RBF networks, in which the bias parameters are not
degrees of freedom to be determined but are fixed a priori
by quasi-random sequences. Of course, a fair comparison
between the two approaches in terms of solution accuracy
and complexity (computation time, storage, parallelization
capabilities etc.) would be welcome, but this is beyond the
scope of this paper and will be the subject of further work.

This PIML approach was compared to the analytical so-
lution of the 2D ADPDE with Dirichlet boundary con-
ditions, based on Fourier series (see Chapter 3, Section
3.4 in Lopez-Ferber (2024)) and shows excellent accuracy
results. This RBF-FD PIML solver will be used to provide
a reference solution in the case study of Section 5. Now,
we extend this approach to source term estimation.

4. SOURCE TERM ESTIMATION BASED ON
RBF-FD PIML

The source term estimation (STE) problem consists in
reconstructing the unknown distribution of a source s(z)
and its associated pollutant concentration u(z) over the
domain Q from M measurements u; made by a set of
a fixed or mobile sensors in domain 2. We formulate
the STE problem as an extension of the RBF-FD PIML
problem (17) by adding the least-square error between
the measurements and the output predictions made by
a model of the sensors, where C(y;) denotes the output
operator at location y; of the k-th measurement uj:

1 &L
rBiSn M Z E|C(Z/Z)! —up|?

== k=1

Ngq
(65} 2
+N79 ]; WL (yr)u — ¥ (yr)s|

Naq
|05 (yk)ul®, ar,as >0,
k=1

(6%)

+
Noaq

(21)

where s is the vector of the approximate s(x;)’s, Va; € Xq,
a1 and «g are weighting coefficients, and the r;’s are the
variance of the noise of measurement k (this makes it pos-
sible to adjust the confidence placed in the measurements
according to the quality of different sensors).

The operators C(y;) are here defined, using the interpola-
tion operator (16), as follows:

C(yi) = U(yi)- (22)
However, an alternative definition is possible if we consider
an integral output operator for problem (3) of the form:

Clutu = /Q Ale - y)ulz)de,

where A is the characteristic function of the sensor (for
example, a Gaussian function). Then, using (16) in (23),
C(y;) is given by:

C(y;) :/QA(x—yZ)\I'(x)dm, k=1,--- M. (24)

The integrals can be approximated using a quasi-Monte-
Carlo method based on the low discrepancy sequence used
for Xq.

(23)
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Once again, problem (21) can be expressed in the same
way as problem (18)-(19) and an explicit solution can be
easily derived using a left pseudo-inverse calculus or an
iterative least-square solver optimized for sparse problems.
It should be emphasized that this approach can be used to
estimate any continuous source distribution without any
restriction on the shape of the source.

5. CASE STUDY

In order to evaluate the performance of the proposed
STE approach, we consider in this paper a 3D case
study involving the estimation of a single source in a
3D domain without obstacles and a mix of Dirichlet and
Neumann boundary conditions. The ”true” measurements
are obtained from the high-resolution solution of the
ADPDE using the RBF-FD PIML solver described in
Section 3. Table 1 provides the physical description of the
case study.

Table 1. Physical parameters of the case study
in international units.

Parameters Values
Cubic domain (L¢,, Le,, Le,) (250, 250, 50)
Wind velocity (U1, Uz, Us) (3,5,1)
Diffusion (K1, K2, K3) (20,20,10)

4 Neumann BC for: (1 =L¢,, &2 = Le,,
€3 =0, &3 = Lgg)

2 Dirichlet BC for: (&1 =0,& =0)

The simulated ”true” source term used to generate the
reference concentration field is a parameterized Gaussian
function defined over §2:
1

$: x> asexp (—Mﬂx - xs)|2) , T €9,
where a; = 10gm™3s?!, the source position z, =
[0.25L¢, m, 0.25L¢, m, 1m] and p = 10m. The source
term is shown in a 2D layer at an altitude of 1 m in Fig. 1.
The resulting pollutant concentration computed by a high-
resolution RBF-FD PIML solver is shown in Fig. 2. The
PHS ¢(y) = r®, r = ||ly—x;|| were used for the PIML solver
and STE. The stencil size IV, is chosen equal to 100. Here,
N, must not be less than 80 to obtain sufficiently accurate
results. The parameters of the reference PIML solver are
shown in Table 2.

Table 2. Parameters of the RBF-FD PIML

(25)

solver.
N; card(X) card(Ynp) card(Ypq) o
100 4096 16384 1024 x 6 1

Two scenarios are presented in this paper for the STE:
both are based on a reduced RBF-FD model with 2 times
fewer center and evaluation points than those used in the
reference solver. Table 3 shows the parameters of the two
scenarios. Scenario 1 corresponds to 1500 measurements,
while scenario 2 relies on 150 measurements only. We
simulated noise measurement by adding a Gaussian noise
with zero mean and a standard deviation o of 0.1 to the
measurements provided by the reference RBF-FD PIML
solver. The location of the measurements is here chosen
to coincide with the points in a Sobol sequence defined on
the 3D domain. The weighting coefficients a; and as are



chosen equal to 1 and 20, respectively. The coefficients
are all equal to o2 (variance of the measurement noise).
All the simulations are performed in MATLAB.

Table 3. Parameters of the STE.

M Nz card(X) card(Yn) card(Yaq)
Scenario 1
1500 100 2048 8192 512 x 6
Scenario 2
150 100 2048 8192 512 x 6

Unsurprisingly, scenario 1 produces the best results in
terms of source location (with L location error less than
1 m), and amplitude estimation (see Fig. 4 and Fig. 3),
while providing a good-precision estimate of the pollutant
field. However, scenario 2 (with only 150 measurements)
is still able to provide an accurate estimate of the source
location (with Ly location error less than 2 m), despite the
appearance of artefacts visible in Fig. 5, and a reasonable
estimate of the pollutant field (see Fig. 6).

Source at &= 1 meter

250
200
150
100
50
U l
0 50 100 150 200 250
3

1

E2
EN o0 o ~ 3 ©

w

[N}

Fig. 1. True source obtained from the reference PIML
solver.

Pollutant concentration at 53 =1 meter

250
20
200
15
150
100 10
50 5
0 0
0 50 100 150 200 250
£

1

&

Fig. 2. True pollutant concentration obtained from the
reference PIML solver.

It should be pointed out that all the RBF-FD operators
(14), (15), and (16) in the PIML solver and the STE
are computed using MATLAB code parallelization. The
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Source estimate at &= 1 meter
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Fig. 3. Source estimate with 1500 measurements.

Pollutant concentration estimate at &= 1 meter
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Fig. 4. Pollutant concentration estimate with 1500 mea-
surements.
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Fig. 5. Source estimate with 150 measurements.

ability to parallelize code is a very interesting feature
of this approach. The solution for the reference PIML
solver and the STE are obtained from a left pseudo-inverse
calculation. Table 4 provides the average computation



Pollutant concentration estimate at &= 1 meter
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Fig. 6. Pollutant concentration estimate with 150 measure-
ments.

times needed on a PC equipped with a 8-Core CPU (AMD
Ryzen 7 3700X, 3600 Mhz) used for parallelization, with
computation costs compatible with real-time applications.

Table 4. Computation times with the parame-
ters in Tables 2 and 3.

Nature of the computation Average time

Solver (RBF-FD operators + inversion) 525
Reduced model for STE (RBF-FD operators) 16s
RBF-FD PIML STE (inversion) 10s

6. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a physics-informed ma-
chine learning approach based on RBF-FD approxima-
tions. This approach seems promising for detecting and
locating a static pollution source with good accuracy, at
a particularly low computing cost and based on a net-
work of fixed or mobile sensors. Future work will focus
on evaluating this approach in a heterogeneous domain
as encountered in an real urban environment involving
buildings, the use of real data, and the estimation of non-
stationary sources with mobile sensors. A comparative
study with the PINN approach will also be carried out.
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