A new FDSOI spin qubit platform with 40nm effective control pitch
Thomas Bedecarrats
(1)
,
Bruna Cardoso Paz
(2)
,
Biel Martinez I Diaz
(3)
,
Heimanu Niebojewski
(1)
,
Benoit Bertrand
(4)
,
Nils Rambal
(4)
,
Corinne Comboroure
(5)
,
Aurélien Sarrazin
(5)
,
Francois Boulard
(5)
,
Estelle Guyez
(4)
,
Jean-Michel Hartmann
(4)
,
Yves Morand
(1)
,
Alexandre Magalhaes-Lucas
(1)
,
Etienne Nowak
(1)
,
Edoardo Catapano
(1)
,
Mikael Casse
(1)
,
Matias Imanol Urdampilleta
(2)
,
Yann-Michel Niquet
(3)
,
Fréd Gaillard
(1)
,
Silvano de Franceschi
(3)
,
Tristan Meunier
(2)
,
Maud Vinet
(1)
1
DCOS -
Département Composants Silicium
2 NEEL - QuantECA - Circuits électroniques quantiques Alpes
3 IRIG - Institut de Recherche Interdisciplinaire de Grenoble
4 CEA-LETI - Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information
5 DPFT - Département Plate-Forme Technologique
2 NEEL - QuantECA - Circuits électroniques quantiques Alpes
3 IRIG - Institut de Recherche Interdisciplinaire de Grenoble
4 CEA-LETI - Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information
5 DPFT - Département Plate-Forme Technologique
Matias Imanol Urdampilleta
- Fonction : Auteur
- PersonId : 738887
- IdHAL : matias-urdampilleta
- ORCID : 0000-0002-7935-2783
- IdRef : 176333592
Tristan Meunier
- Fonction : Auteur
- PersonId : 742176
- IdHAL : tristan-meunier
Résumé
Operating Si quantum dot (QD) arrays requires homogeneous and ultra-dense structures with aggressive gate pitch. Such a density is necessary to separately control the QDs chemical potential (i.e. charge occupation of each QD) from the exchange interaction (i.e. tunnel barriers between each QD). We present here a novel Si quantum device integration that halves the effective gate pitch and provides full controllability in 1D FDSOI QD arrays. The major advantages of this architecture are explored through numerical simulations. Functionality of the fabricated structure is validated via 300K statistical electrical characterization, while tunnel-coupling control is demonstrated at cryogenic temperature.