Configuring the IEEE 802.1Q timeaAware shaper with deep reinforcement learning - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Communication Dans Un Congrès Année : 2024

Configuring the IEEE 802.1Q timeaAware shaper with deep reinforcement learning

Résumé

Discussions surrounding Industry 5.0 emphasize the need for a fully interconnected industrial ecosystem, integrating AI and digital twins. In this environment, industrial equipment must collaborate seamlessly with human workers, requiring low-latency, high-data-rate connectivity for real-time monitoring. To address this demand, Time-Sensitive Networking (TSN) standards have been developed. However, configuring TSN in dynamic industrial networks poses challenges. The IEEE 802.1Q standard offers mechanisms like the Time-Aware Shaper (TAS) to achieve deterministic latency when configured correctly. In this paper, we tackle the configuration of TAS in dynamic networks, like reconfiguration of production lines to fit production objectives or the deployment of new applications in the production line resulting in adding new flows in the network. Our solution employs Deep Reinforcement Learning (DRL), trained and evaluated through simulations, offering adaptability to changing network conditions and dynamic production line reconfigurations.
Fichier principal
Vignette du fichier
NOMS_2024_NoteIEEE.pdf (419.27 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

cea-04639653 , version 1 (09-07-2024)

Identifiants

Citer

Adrien Roberty, Quentin Besnard, Siwar Ben Hadj Said, Frédéric Ridouard, Henri Bauer, et al.. Configuring the IEEE 802.1Q timeaAware shaper with deep reinforcement learning. IEEE/IFIP Network Operations and Management Symposium, May 2024, Seoul, South Korea. pp.1-7, ⟨10.1109/NOMS59830.2024.10575623⟩. ⟨cea-04639653⟩
60 Consultations
47 Téléchargements

Altmetric

Partager

More