
HAL Id: cea-04639653
https://cea.hal.science/cea-04639653

Submitted on 9 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Configuring the IEEE 802.1Q timeaAware shaper with
deep reinforcement learning

Adrien Roberty, Quentin Besnard, Siwar Ben Hadj Said, Frederic Ridouard,
Henri Bauer, Annie Geniet

To cite this version:
Adrien Roberty, Quentin Besnard, Siwar Ben Hadj Said, Frederic Ridouard, Henri Bauer, et al..
Configuring the IEEE 802.1Q timeaAware shaper with deep reinforcement learning. IEEE/IFIP
Network Operations and Management Symposium, May 2024, Seoul, South Korea. pp.1-7,
�10.1109/NOMS59830.2024.10575623�. �cea-04639653�

https://cea.hal.science/cea-04639653
https://hal.archives-ouvertes.fr


Configuring the IEEE 802.1Q Time-Aware Shaper
with Deep Reinforcement Learning

Adrien Roberty∗, Quentin Besnard∗, Siwar Ben Hadj Said∗,
Frederic Ridouard†, Henri Bauer† and Annie Geniet‡

∗Université Paris-Saclay, CEA, List, F-91191, Palaiseau, France
†ISAE-ENSMA - LIAS Futuroscope Cedex, France

‡Université de Poitiers - ISAE-ENSMA - LIAS Poitiers, France
Email: {adrien.roberty, quentin.besnard, siwar.benhadjsaid}@cea.fr,

{frederic.ridouard, henri.bauer}@ensma.fr, annie.geniet@univ-poitiers.fr

Abstract—Discussions surrounding Industry 5.0 emphasize the
need for a fully interconnected industrial ecosystem, integrating
AI and digital twins. In this environment, industrial equipment
must collaborate seamlessly with human workers, requiring
low-latency, high-data-rate connectivity for real-time monitor-
ing. To address this demand, Time-Sensitive Networking (TSN)
standards have been developed. However, configuring TSN in
dynamic industrial networks poses challenges. The IEEE 802.1Q
standard offers mechanisms like the Time-Aware Shaper (TAS)
to achieve deterministic latency when configured correctly. In
this paper, we tackle the configuration of TAS in dynamic
networks, like reconfiguration of production lines to fit produc-
tion objectives or the deployment of new applications in the
production line resulting in adding new flows in the network.
Our solution employs Deep Reinforcement Learning (DRL),
trained and evaluated through simulations, offering adaptability
to changing network conditions and dynamic production line
reconfigurations.

I. INTRODUCTION

The industrial landscape is undergoing a profound trans-
formation, with Industry 4.0 and its successor, Industry 5.0,
leading the way. In the context of Industry 4.0, activities
such as monitoring the production line, including tasks like
gathering temperature and humidity data from sensors, can
reasonably accommodate relatively higher latency levels, often
in the range of 50 to 100 ms. However, when it comes to
real-time control of machines and robots, the performance
requirements become more stringent. These tasks necessitate
ultra-low latency such ad 100µs [1]. Achieving such rapid
responsiveness is critical for precision and safety in industrial
operations. Moreover, according to discussions on Industry
5.0, there is a strong push toward establishing a fully in-
terconnected industrial ecosystem. This vision encompasses
concepts like digital twins, human-centric communication,
and the integration of artificial intelligence (AI) [2]. In this
advanced environment, industrial equipment is anticipated to
seamlessly collaborate with human workers, necessitating low-
latency, high-data-rate connectivity for real-time monitoring.

Time Sensitive Networking (TSN) is a collection of stan-
dards that aims to include real-time features to wired Ethernet
networks [3]–[5]. TSN’s first advantage is its ability to guar-
antee high bandwidth and deterministic communications, with
high synchronicity, bounded and strict latency. The second

advantage is its configurable mechanisms that can handle a
combination of diverse traffic constraints on the same medium.
These mechanisms can efficiently adapt to a wide range of
services and ensure that the network can be customized to
meet the unique requirements and constraints of different
applications.

TSN also provides profiles that specify the TSN standards
to use and how to use them in particular application scenarios.
For example, the IEC/IEEE 60802 standard project provides
a TSN profile for industrial automation [1].

The main focus of this article is IEEE 802.1Q [6] standard
and more precisely, on its IEEE 802.1Qbv [7] amendment
(Amendment 25: Enhancements for Scheduled Traffic). The
objective of this standard is to minimize the queuing delay
in switches for critical traffic, thereby achieving a low and
consistent end-to-end latency. To accomplish this, the standard
proposes a time-sensitive queue draining approach that sched-
ules frame transmission relative to a recognized timescale
named Time-Aware Shaper (TAS). This mechanism involves
the installation of gates in front of queues that can be opened
or closed based on a configurable cycle time. This approach
enables the scheduling of frame transmissions using timing
derived from the IEEE 802.1AS [8] standard. Throughout the
remainder of the paper, we will use the abbreviation "TAS"
to refer to the scheduling mechanism outlined in the IEEE
802.1Qbv standard.

In industry 5.0 environment, the production lines can be
reconfigured over time and even new application can be
deployed as containers in the existing industrial networks,
resulting in a dynamic network where topology and flows are
varying. This poses a challenge regarding developing a new
algorithm capable to react to network change by computing
new TAS configuration within a limited time.

The TAS scheduling alone can lead to a well-known NP-
hard problem [9]–[11]. The common approach in literature is
based on engineering tools such as mathematical optimization
tools like Integer Linear Programming (ILP) formulations or
Satisfiability Modulo Theories (SMT) solvers [12]. However,
these engineering tools are unsuitable for configuring TAS in
dynamic network. First, to provide a good TAS configuration
to deploy, these tools require prior knowledge of all the flows

© 2024 IEEE. This is the author’s accepted version of the article that has been published in the proceedings of the 2024 IEEE Network Operations and Management Symposium (NOMS 2024). The final 
version of this article is available at https://ieeexplore.ieee.org/document/10575623 (A. Roberty, Q. Besnard, S. B. Hadj Said, F. Ridouard, H. Bauer and A. Geniet, "Configuring the IEEE 802.1Q Time-
Aware Shaper with Deep Reinforcement Learning," NOMS 2024-2024 IEEE Network Operations and Management Symposium, Seoul, Korea, Republic of, 2024, pp. 1-7, doi: 10.1109/
NOMS59830.2024.10575623). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



that could be present in the network. In that sense, if a change
happen in the network, the computed TAS schedule is no
more effective. In case new flows are added to the network,
generating news TAS schedule through these engineering
tools can take several hours [13] before the new flows can
be accepted/rejected, and the decided configuration can be
deployed.

To surmount the challenges mentioned earlier, there arises
a crucial need for an algorithm capable of swiftly determining
TAS configurations. This algorithm must possess the agility to
promptly respond to emerging events, such as the introduction
of new data flows, alterations in network topology, or changes
in flow configurations. Furthermore, it should excel in accom-
modating the gradual deployment of applications within the
TSN network.

In this paper, we harness Reinforcement Learning (RL)
methodologies to develop a new TAS scheduling algorithm
capable to compute efficient TAS schedules within a reason-
able time frame. In particular, this work’s contributions are as
follows:

• We propose an RL-based TAS scheduling that is capable
to produce a TAS schedule by just observing the envi-
ronment state.

• We train the proposed solution over simulations using
OMNET++/INET network simulator. INET is a model
library with open-source features that includes the TSN
models.

• We show and compare the learning rate for three kinds of
topology. We show as well the capability of the algorithm
to accommodate the changing number of flows.

The remaining part of the document is organized as follows:
Section II gives an overview of the current state of the art while
Section III delineates the various elements of the suggested
approach. In Section IV, we explain the methodology we
employed for setting up the training loop and furnish the
evaluation of the schedules determined by the agent. Finally,
Section V concludes the paper and presents perspectives.

II. RELATED WORK

Several studies have tackled the challenge of configuring
TSN. For instance, the work done by [14] offers an analysis of
the real-time traffic that traverses the TSN network, allowing
for an assessment of whether time constraints are met. The
conventional method of computing a deterministic schedule
for TAS involves using an Integer Linear Programming (ILP)
formulation [9], [15]. While this approach is efficient for small
networks, it can take a significant amount of time to converge
for larger networks. Additionally, these are offline techniques
that are not suitable for open and reconfigurable networks.
Another example is [16]. This solution, which is based on the
IEEE 802.1Qcc standard [17], allows for online reconfigura-
tion of an IEEE 802.1Qbv-based network. However, it relies
on an admission control mechanism and does not modify the
Qbv time cycle in the switches. The issue of online schedule
reconfiguration remains an outstanding challenge in TSN [18].

The utilization of AI methods appears to hold great potential
for managing networks. It has the capability to predict net-
work congestion and make decisions regarding routing strate-
gies [19], [20]. Nonetheless, there have been limited efforts to
investigate the use of AI techniques for TSN configuration.
For example, the authors of [21] suggests using RL tech-
niques to schedule streams in 5G deterministic asynchronous
networks. The proposed solution exclusively configures the
Asynchronous Traffic Shaper (ATS) mechanism described in
the IEEE 802.1Qcr amendment to the IEEE 802.1Q standard.
In [13], the authors employ AI methods to determine the
feasibility of a potential configuration, i.e. whether it satis-
fies the application requirements. To accomplish this, they
experiment with simple supervised and unsupervised learning
algorithms to classify possible configurations as feasible or
non-feasible. The primary disadvantage of this solution is that
the AI is only effective on a specific topology. When the
topology changes, their AI necessitates retraining. Moreover,
the proposed solution is unsuitable for online configuration.

A study by [22] has employed DRL to manage the routing
and scheduling of mixed-criticality traffic within a Determinis-
tic Networking (DetNet) framework, which operates at layer 3.
On the other hand, TSN operates at layer 2. Another research
by [23] has utilized DRL to support their TAS scheduling
algorithm. Nevertheless, their approach adopts the no-wait
model for TSN scheduling, which was initially introduced
in [24]. This approach involves scheduling being carried out
in the clients, necessitating a prior understanding of each flow.

The field of Reinforcement Learning is vast. A glimpse of it
can be found in [25]. To help choose the appropriate algorithm,
RL algorithms can be categorized. Firstly, the algorithms are
classified as model-based (where the agent can predict the
outcome of each action) or model-free. At first glance, since
we cannot predict the environment’s development, we will use
model-free algorithms. Secondly, we have to decide how the
agent will learn, either on-policy (where the algorithm assesses
and enhances the policy employed for selecting actions) or off-
policy (where the algorithm assesses and enhances a policy
that differs from the one used to select actions). We have two
algorithms that catch our attention.

III. RL-BASED TAS SCHEDULING

In this section, we describe our RL environment and the
assumptions made. We also present the RL formulation that
allows to learn and decide TAS scheduling.

A. Network model

The TAS mechanism shares a resemblance to the Time-
Division Multiple Access (TDMA) technique. The transmis-
sion time is sliced into cycles of unchanging duration, which
are further divided into time sequences of variable lengths.
Each sequence is then allocated to a specific traffic class.
In Figure 1, the TAS mechanism is illustrated within a TSN
switch. The standard assigns a queue for each flow priority and
a logical gate controlling tranmission over each queue. These
gates can either be open (allowing frames in the associated



queue to be transmitted) or closed (preventing frames in the
associated queue from being transmitted). A Gate Control List
(GCL) manages these gates, defining which gates are open and
for how long at each instant. When multiple queues’ gates
are opened simultaneously, the priority determines the frame
transmission order. The standard outlines 8 different priorities,
starting from 7 (highest) to 0 (lowest), requiring the presence
of eight queues.

Port 1 
(ingress)

Port 2 
(ingress)

Port 3 
(egress)

AA

BB

BB

AA

Q0

Q6

Q7

.

.

.

.

.

.

t0 t1 t2 t3 …

Q7 1 0 1 0 …

Q6 0 0 0 0 …

Q5 0 0 0 0 …

Q4 0 1 0 1 …

Q3 0 0 0 0 …

Q2 0 0 0 0 …

Q1 0 0 0 0 …

Q0 0 0 0 0 …

Gate Control List (GCL)

BB

Figure 1. The TAS scheduling mechanism

The TAS operation is illustrated in Figure 2 through a
simple network with two TSN switches, two talkers and two
listeners. We assume two types of flows: critical flow with
high priority and ‘normal’ flow, also known as Best Effort
(BE) flow, with low priority.The critical flow is a periodic
flow that requires deterministic ultra-low latency with hard
deadlines and low jitter without packet loss. To guarantee
these requirements, TAS allows to dedicate one time slot for
the critical flow and therefore protects this flow from any
interference coming from other traffic types. The TAS cycle
can be divided into two time sequences. The first sequence is
reserved for critical flow, while the second sequence is for all
other flows.

TSN Switch S1 TSN Switch S2

Time 
sequence 1

Talker 1

Talker 2 Listener 2

Listener 1
Cri�cal traffic

Best effort traffic

Scheduling in IEEE 802.1Qbv 
cycle 

Cycle length Cycle length

Time 
sequence 2

Time 
sequence 1

Time 
sequence 2

Figure 2. An illustrative example of two talkers (Talker 1 for critical traffic and
Talker 2 for BE traffic) exchanging with two listeners (Listener 1 for critical
traffic and Listener 2 for BE traffic) via a linear TSN network composed of
two TSN switches

For the scope of this study and in order to simplify our

problem, we have made the following assumption about the
network:

1) We are assuming a precise time synchronization in
network according to the IEEE 802.1AS standard. This
assumption is justified as our paper primarily concen-
trates on configuring the TAS, which in turn depends on
the accurate time synchronization ensured by gPTP.

2) In Ethernet TSN networks, the end-to-end delay com-
prises transmission delay (i.e. time it takes for data
to pass through any network interfaces), propagation
delay over links and processing and queuing within TSN
switches. Here, we assume uniform processing delays in
all switches and identical link capacities, simplifying our
RL formulation. Our algorithm’s focus is to determine
schedules that minimize queuing delay in switches for
critical traffic, thus reducing overall end-to-end delay.

3) we consider a network with a constant number of
switches.It’s worth noting that switch numbers in a
factory setting are typically not subject to frequent
changes. Consequently, this fixed setup does not pose
a significant concern for our study.

In this paper, we consider three kinds of network topology:
linear, ring and mesh, illustrated in Figure 3. This diversity is
crucial, as it equips the RL agent with the ability to decide
TAS configuration in any network topology.

B. Traffic model

We consider periodic traffic for critical traffic and sporadic
exponential traffic for the BE traffic. The critical (TSN)
flows adhere to a uniform distribution within the range of
[0µs,400us]. Conversely, all Best Effort (BE) flows are as-
sumed to follow exponential distribution with a parameter
of 400us. To train over varied network configurations (i.e.
varying the number of flows in the network), we employ
several distributed clients that generates critical and BE traffic.
Each critical flow has a deadline (i.e. the maximum accepted
end-to-end latency) that should be respected. The agent’s goal
will then be to find a TAS schedule that will allow the critical
flow’s latency to be below this deadline.

C. RL formulation

As illustrated in Figure 4, the RL problem can be described
as a Markov decision process (MDP), characterized by a state
space denoted as S and an action space denoted as A. It is
thus defined by the corresponding tuple (S,A) representing all
possible network states and the corresponding set of actions.
In addition, RL problem includes a reward function denoted
as R(S,A) which, through some observation metrics in the
state, evaluates the quality of the actions taken by the agent.

The learning process of our RL takes the form of a state
S on which the agent apply an action. The agent is rewarded
based on the achieved end-to-end latency of the critical flow.
This sequence of actions is then repeated until the agent
reaches the TAS configuration that allows to achieve, for the
critical flow, an end-to-end latency below the deadline. The
main challenge is to define the state, action, and reward of RL



Figure 3. Network topology considered during training phase. The switch number stays the same, links and clients number may vary

Environment

Agent

Action At Reward Rt

S
t+1

R
t+1

State St

Figure 4. The interactions between the agent and the environment

that achieves our goal. The training process consists of a set
of learning episodes (i.e. a sequence of interactions between
the agent and the environment until a terminal state). Each
learning episode has a different length, i.e., an episode requires
a different number of steps before reaching at a terminal state.

1) State: The state of the model includes the entire TAS
configuration parameters (i.e. the TAS cycle duration, TSN
time slot duration, TSN time slot position within the cycle, BE
time slot duration) as well as the TSN flow latency parameter.
The agent moves from one state to another by proposing,
each time, a new TAS configuration for the network that has
not been explored/tested. The agent measure the quality of
each transition (i.e. from a state S(t) to S(t+ 1)) through an
observation of the environment and more precisely the end-to-
end critical flow latency. The agent can transition from a state
with a suboptimal TAS configuration to a state with an optimal
TAS configuration in just one time step, and vice versa. The
challenge lies in the ability of the model to learn what is the
optimal configuration for its environment. To overcome this
challenge, we set up the following rules to help the agent:

• The measured end-to-end latency of the TSN flow in the
current state is below the deadline (i.e. the maximum end-
to-end accepted latency by the TSN flow), the reward is
therefore positive, and it represents the end of the episode;

• The measured end-to-end latency of the TSN flow in the
current state is greater than the deadline. The agent has
two options:

1) The time step number is below the configured
maximum time steps per episode: the agent tries
to explore other possibilities;

2) The time step number is equal to the configured
maximum time steps per episode (i.e. means the end
of the episode): a negative reward is given, the agent
updates the state and moves on to a new episode.

By doing this, we give the agent the possibility of exploring a
set of configurations within each episode, but these are delib-
erately short to accelerate the learning. The agent is updated
regularly until a high-performance configuration subspace is
discovered where the agent can converge towards an optimal
configuration.

2) Action: The action space consists in modifying the TAS
configuration parameters. To simplify the system, we make the
assumption of having only two traffic classes, namely critical
and BE and therefore considers only two queues and gates.
This reduction in the number of traffic classes helps streamline
the action space. Hence, when configuring TAS on a single
egress port of the TSN switch, the process involves setting
the following parameters for each gate:

• dcycle: represents the duration of the TAS cycle.
• doffset: represents the duration of the offset from the

beginning of the cycle till the instant of opening the gate.
• dopen: represents the duration of the opening of the gate.

The Figure 5 shows graphically the essential TAS config-
uration parameters that the agent has to configure when we
consider only two gates in an egress port.

Cycle duration (dcycle)

Gate 1
Gate 0

Offset duration (doffset)

Opened gate duration (dopen)

Closed gate duration (dcycle – doffset - dopen)

Time

Figure 5. Essential TAS configuration parameters

3) Reward: The reward is used to evaluate the new schedule
decided by the agent. We used the following formula:

reward =
deadline− new_latency

10
− penalty

Where new_latency represents the current measured end-to-
end delay of the critical flow and the deadline represents



a limit beyond which the new_latency is considered unac-
ceptable for the critical flow. Both parameters are given in
milliseconds. As long as the new latency is below the deadline,
the reward is negative. This allows to encourage the agent
to find faster an acceptable solution, and then to improve its
decisions. The penalty variable is important to punish the
agent when it generates an error during the simulation due
to too extreme values that has been decided by the agent,
or to accentuate the fact that the wasn’t able to decide TAS
configurations allowing to achieve good latency. If the latency
obtained with the decided TAS configuration is below this
deadline, then the episode comes to an end.

D. Agent

The agent is the brain of our learning environment. It is
governed by a learning algorithm such as Proximal Policy
Optimization (PPO), depending on the problem (i.e., how
the environment is modelled, as each algorithm can’t be
applied to each environment). PPO is part of the family of
deep reinforcement learning (DRL) algorithms. These intersect
reinforcement learning (RL) and deep learning (DL) to allow
the exploration of results on very large and unstructured data
spaces. PPO uses policy-based learning to learn practical work
through the evaluation of existing policies and evaluates the
environment. It supports exploration using the entropy method.
A low entropy forecast has a strong confidence in choosing
an event, while a high entropy forecast is uncertain about
which event to choose. PPO offers better acceptance rates
and efficiency than other systems but is sensitive to change.
For this reason and also because of its ability to manipulate
discrete action spaces and a continuous observation space,
we decided to base the agent learning process on the PPO
algorithm.

IV. EVALUATION

In this part, we present the setup and then provide the results
of the training of our RL-based TAS scheduling solution.

A. Setup

The training setup is divided into 3 parts as shown on
Figure 6:

1) The RL agent (governed by PPO);
2) The network simulator OMNeT++/INET;
3) The intermediate environment allowing the connection

between the agent and simulator.
The RL agent uses the Stable-Baselines3 [26] library for the

implementation of the PPO algorithm, and the RL Baselines3
Zoo [27] training framework. Stable-Baselines3 relies on Py-
Torch [28] for the neural networks. The agent is connected
to the environment via the Gymnasium API [29]. This allows
the agent to be brought into contact with the simulator by
implementing a set of interactions for decision-making and
observation retrieval.

The simulator where the agent will undergo training is based
on the OMNeT++ network simulator and its extensions INET1.

Simulator

Environment

Agent

OMNeT++/INET

Gymnasium

Stable-Baselines3

Action AtReward RtState St

Rt+1

St+1

Figure 6. Training setup

The IEEE 802.1 TSN Working Group has recommended the
use of OMNeT++ for carrying out TSN network simulations.

Upon completion of the simulation, the results are stored in
SQLite format. The agent can retrieve the end-to-end latency
per packet and the number of packets sent/received per flow
from the obtained results. Additionally, the SQLite database
contains a vector of TAS gate states, the number of packets
waiting in each queue, and other relevant information that
aids in evaluating the agent’s schedule. These features enable
the management of the environment from a Python script,
including configuration modification, simulation initiation, and
result analysis.

To speed up the training process, the simulation duration
has been reduced to 1 seconds per iteration. Even so, each
simulation needs on average 20 seconds to execute including
the time required by OMNET++ to generate the required files
to run the simulation, which is long and can lead to a long
training time.

B. Experimentation

Figure 7 shows the learning rate of our RL agent for the
three types of network topology (i.e. linear, ring and mesh)
with 5 switches and 3 clients. We note the learning rate of
the agent applied to a mesh network is better than when the
network topology is linear or ring. The case of the linear
network presents the worst case where the flow must then
meet all of the switches in the network, thus finding itself
significantly slowed down.

0 0.5 1 1.5 2 2.5

·104

−4,000

−2,000

0

Steps

R
ew

ar
d

Linear topology
Ring topology
Mesh topology

Figure 7. Training over three types of network topology (mesh, ring and
linear)

Then, to tend toward a more complex network, we set up
2 new experiments, which consists of:

1Available at https://omnetpp.org/ and https://inet.omnetpp.org/



1) varying the number of clients during training on a classic
linear network with 5 switches in order to observe the
model’s behavior while varying the number of clients
between 1 and 5 after each episode;

2) varying the topology with a fixed number of clients (3
clients) in order to observe the reaction of the model to
these major changes;

The Figure 8 shows the results.

0 0.2 0.4 0.6 0.8 1

·105

−3,000

−2,000

−1,000

0

Steps

R
ew

ar
d

Various number of apps
Random topology

Figure 8. Training on random number of clients (1 to 5) for each episode
with linear topology and random topology (mesh, ring and linear) for each
episode with 3 clients

The first observation is obviously the drastic increase in
training time compared to training on a simple topology
(Figure 7). Beyond an increase in the necessary learning time,
we see that the model always manages to find convergence
towards interesting configurations. There is still a limit in
this convergence because it stagnates towards an average
configuration suitable for different topology without being
excellent in each case. The new configurations produced are
much better than a randomly generated configuration, but they
are less efficient than a configuration generated with a model
trained only on the dedicated topology.

To push further the complexity of a single-agent model to
generate configurations, we set up an experiment representing
the fusion of the two previous experiments (Figure 8) with a
modification of the reward in order to aim for the minimization
of a negative reward. This is based on a ]-∞, 0] space and
behaves to tend to 0 when the configuration minimizes network
latency. The goal of this experiment is to observe the level of
optimization that a model can achieve with a configuration
on different topology and with a variable number of clients.
The result is shown on Figure 9, which depicts the learning
behavior in a very unstable environment.

0 0.5 1 1.5 2

·105

−10

−5

0

Steps

R
ew

ar
d

Figure 9. Cross-training between random topology (mesh, ring and linear)
and random clients (1 to 5)

Despite being time-consuming to train, we can notice a
nice improvement in the reward which converges towards its
maximum achievable as defined in the system. As we can see,
learning takes place in a consecutive step of search then stabi-
lization until finding a new set of parameters to study in more

detail. We can identify an initial improvement with parameters
chosen more effectively than by luck and then stabilize the
latter with a slight improvement over time. Subsequently, when
discovering a new set of usable parameters, it repeats this steps
until reaching a maximum which represents the optimal subset
of parameters. Until the reward is completely stabilized, the
learning process is not yet complete. We can also observe,
through the convergence, the robustness of the model when
it faces difficult environments like ours. This suggests many
possibilities regarding its ability to learn on much larger
environments with notably many more clients. During this
last experiment, we also recorded the average episode length
(Figure 10). This shows how much try (on average) the agent
needs before finding a solution. We can see that our model
pushes the agent to find quicker an acceptable solution. In the
end of the training, the agent needs on average 2 tries before
finding a solution. If we consider that a simulation lasts around
20 seconds, this means that the agent will need less than a
minute to find a solution.

0 0.5 1 1.5 2

·105

1

1.01

1.02

1.03

Steps

St
ep

s/
ep

is
od

e

Figure 10. Average episode length during the last training

V. CONCLUSION AND FURTHER WORK

In this paper, we introduce an RL-based approach for
configuring TAS schedules in TSN networks. Our assessments
have demonstrated that the agent we designed can provide
an acceptable configuration within a reasonable timeframe,
showcasing the potential of RL to create autonomous network
configuration solutions for TSN networks without the need for
prior knowledge of flow patterns.

One of the constraints brought by our single-agent is the
need to know beforehand the topology and the number of
switches within the network due to the rigidity of the action
space. Because of this, changing the core of the network
dynamically during the training is impossible. This means
that the core of the production network must share a strong
resemblance to the topology used for training the model.
To solve this issue, one idea would be to port our current
single-agent project to a multi-agent reinforcement learning
(MARL) version in which each switch would correspond to
an autonomous agent working on the optimization of the
overall network. Porting to a multi-agent version would help
to overcome this dependence on the network topology to
concentrate solely on the density of communications such as
the number of clients or even network speeds. Thus, the ideal
of the model could adapt without topology concerns to other
application networks and concentrate the optimization of the
scheduler on the flows and capacities of the sub-networks.



REFERENCES

[1] IEC/IEEE, “Iec/ieee 60802 tsn profile for industrial automation
- draft 2.1,” https://www.ieee802.org/1/files/private/60802-drafts/d1/
60802-d1-2.pdf, 2020.

[2] X. Xu, Y. Lu, B. Vogel-Heuser, and L. Wang, “Industry 4.0 and industry
5.0—inception, conception and perception,” Journal of Manufacturing
Systems, vol. 61, pp. 530–535, 2021.

[3] J. Farkas, L. L. Bello, and C. Gunther, “Time-sensitive networking
standards,” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 20–21, 2018.

[4] N. Finn, “Introduction to time-sensitive networking,” IEEE Communi-
cations Standards Magazine, vol. 2, no. 2, pp. 22–28, 2018.

[5] J. L. Messenger, “Time-sensitive networking: An introduction,” IEEE
Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, 2018.

[6] IEEE 802.1 Working Group, “IEEE Standard for Local and Metropolitan
Area Network–Bridges and Bridged Networks,” IEEE Std 802.1Q-2018
(Revision of IEEE Std 802.1Q-2014), pp. 1–1993, 2018.

[7] ——, “IEEE Standard for Local and metropolitan area networks –
Bridges and Bridged Networks - Amendment 25: Enhancements for
Scheduled Traffic,” IEEE Std 802.1Qbv-2015 (Amendment to IEEE
Std 802.1Q-2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std
802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015), pp. 1–57,
2016.

[8] ——, “IEEE Standard for Local and Metropolitan Area Networks–
Timing and Synchronization for Time-Sensitive Applications,” IEEE Std
802.1AS-2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.

[9] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1Qbv time sensitive networks,”
in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, 2016, pp. 183–192.

[10] K. W. Tindell, A. Burns, and A. J. Wellings, “Allocating hard real-time
tasks: an np-hard problem made easy,” Real-Time Systems, vol. 4, no. 2,
pp. 145–165, 1992.

[11] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance evaluation, vol. 2,
no. 4, pp. 237–250, 1982.

[12] A. C. T. dos Santos, B. Schneider, and V. Nigam, “Tsnsched: Automated
schedule generation for time sensitive networking,” in 2019 Formal
Methods in Computer Aided Design (FMCAD). IEEE, 2019, pp. 69–77.

[13] N. Navet, T. L. Mai, and J. Migge, “Using machine learning to speed
up the design space exploration of ethernet TSN networks,” University
of Luxembourg, Tech. Rep., 2019.

[14] M. Ashjaei, G. Patti, M. Behnam, T. Nolte, G. Alderisi, and L. L. Bello,
“Schedulability analysis of ethernet audio video bridging networks with
scheduled traffic support,” Real-Time Systems, vol. 53, no. 4, pp. 526–
577, 2017.

[15] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive software-
defined network (tssdn) for real-time applications,” in Proceedings of
the 24th International Conference on Real-Time Networks and Systems,
2016, pp. 193–202.

[16] A. Nasrallah, V. Balasubramanian, A. Thyagaturu, M. Reisslein, and
H. ElBakoury, “Reconfiguration algorithms for high precision communi-
cations in time sensitive networks,” in 2019 IEEE Globecom Workshops
(GC Wkshps). IEEE, 2019, pp. 1–6.

[17] IEEE 802.1 Working Group, “IEEE Standard for Local and Metropoli-
tan Area Networks–Bridges and Bridged Networks – Amendment 31:
Stream Reservation Protocol (SRP) Enhancements and Performance
Improvements,” IEEE Std 802.1Qcc-2018 (Amendment to IEEE Std
802.1Q-2018 as amended by IEEE Std 802.1Qcp-2018), pp. 1–208,
2018.

[18] T. Stüber, L. Osswald, S. Lindner, and M. Menth, “A survey
of scheduling in time-sensitive networking (tsn),” arXiv preprint
arXiv:2211.10954, 2022.

[19] V. Sivakumar, O. Delalleau, T. Rocktäschel, A. H. Miller, H. Küttler,
N. Nardelli, M. Rabbat, J. Pineau, and S. Riedel, “Mvfst-rl: An asyn-
chronous rl framework for congestion control with delayed actions,”
arXiv preprint arXiv:1910.04054, 2019.

[20] Z. Mammeri, “Reinforcement learning based routing in networks: Re-
view and classification of approaches,” IEEE Access, vol. 7, pp. 55 916–
55 950, 2019.

[21] J. Prados-Garzon, T. Taleb, and M. Bagaa, “LEARNET: Reinforce-
ment learning based flow scheduling for asynchronous deterministic

networks,” in ICC 2020-2020 IEEE International Conference on Com-
munications (ICC). IEEE, 2020, pp. 1–6.

[22] H. Yu, T. Taleb, and J. Zhang, “Deep reinforcement learning based
deterministic routing and scheduling for mixed-criticality flows,” IEEE
Transactions on Industrial Informatics, 2022.

[23] X. Wang, H. Yao, T. Mai, T. Nie, L. Zhu, and Y. Liu, “Deep reinforce-
ment learning aided no-wait flow scheduling in time-sensitive networks,”
in 2022 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2022, pp. 812–817.

[24] F. Dürr and N. G. Nayak, “No-wait packet scheduling for ieee time-
sensitive networks (tsn),” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems, 2016, pp. 203–212.

[25] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[26] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[27] A. Raffin, “Rl baselines3 zoo,” https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[29] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d.
Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel,
R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen,
and O. G. Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025




