Interoperable and scalable data analysis with microservices: applications in metabolomics - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Article Dans Une Revue Bioinformatics Année : 2019

Interoperable and scalable data analysis with microservices: applications in metabolomics

Matteo Carone
  • Fonction : Auteur
Sijin He
Kim Kultima
  • Fonction : Auteur
Ola Spjuth
  • Fonction : Auteur

Résumé

Motivation Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator. Results We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science. Availability and implementation The PhenoMeNal consortium maintains a web portal (https://portal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects. Supplementary information Supplementary data are available at Bioinformatics online.
Fichier principal
Vignette du fichier
OpenAccess_Payam Emami Khoonsari.pdf (4.23 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-04562419 , version 1 (29-04-2024)

Identifiants

Citer

Payam Emami Khoonsari, Pablo Moreno, Sven Bergmann, Joachim Burman, Marco Capuccini, et al.. Interoperable and scalable data analysis with microservices: applications in metabolomics. Bioinformatics, 2019, 35 (19), pp.3752-3760. ⟨10.1093/bioinformatics/btz160⟩. ⟨cea-04562419⟩
53 Consultations
25 Téléchargements

Altmetric

Partager

More