Smart imagers modeling and optimization framework for embedded AI applications - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Communication Dans Un Congrès Année : 2019

Smart imagers modeling and optimization framework for embedded AI applications

Résumé

This work presents a framework for behavioral simulations of smart imagers with hardware and power constraints. The objective is to compare innovative imaging systems that would be composed of a specific image sensor and a dedicated image processing. For that purpose, a versatile imager model is presented and applied to a time-to-first-spike imager associated with two types of neural networks. Image classification is targeted to assess the system performance, namely the classification accuracy and data throughput. Simulation results depict/show the impact of different key-parameters helping in the choice of the final imaging system architecture.
Fichier principal
Vignette du fichier
Paper-PRIME2020_LCubeiro.pdf (986.63 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

cea-04548812 , version 1 (16-04-2024)

Identifiants

Citer

Luis Cubero, Arnaud Peizerat, Dominique Morche, Gilles Sicard. Smart imagers modeling and optimization framework for embedded AI applications. PRIME 2019 - 15th Conference on Ph.D Research in Microelectronics and Electronics, Jul 2019, Lausanne, Switzerland. pp.245-248, ⟨10.1109/PRIME.2019.8787750⟩. ⟨cea-04548812⟩
16 Consultations
27 Téléchargements

Altmetric

Partager

More