
HAL Id: cea-04548812
https://cea.hal.science/cea-04548812

Submitted on 16 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smart imagers modeling and optimization framework for
embedded AI applications

Luis Cubero, Arnaud Peizerat, Dominique Morche, Gilles Sicard

To cite this version:
Luis Cubero, Arnaud Peizerat, Dominique Morche, Gilles Sicard. Smart imagers modeling and
optimization framework for embedded AI applications. PRIME 2019 - 15th Conference on
Ph.D Research in Microelectronics and Electronics, Jul 2019, Lausanne, Switzerland. pp.245-248,
�10.1109/PRIME.2019.8787750�. �cea-04548812�

https://cea.hal.science/cea-04548812
https://hal.archives-ouvertes.fr


Smart imagers modeling and optimization
framework for embedded AI applications

Luis Cubero, Arnaud Peizerat, Dominique Morche, Gilles Sicard
Univ. Grenoble Alpes

CEA-LETI
Grenoble, France

{luisangel.cuberomontealegre, arnaud.peizerat, dominique.morche, gilles.sicard}@cea.fr

Abstract—This work presents a framework for behavioral sim-
ulations of smart imagers with hardware and power constraints.
The objective is to compare innovative imaging systems that
would be composed of a specific image sensor and a dedicated
image processing. For that purpose, a versatile imager model is
presented and applied to a time-to-first-spike imager associated
with two types of neural networks. Image classification is targeted
to assess the system performance, namely the classification
accuracy and data throughput. Simulation results depict/show
the impact of different key-parameters helping in the choice of
the final imaging system architecture.

Index Terms—Smart imagers, behavioral simulation, spiking
imagers, embedded artificial intelligence

I. INTRODUCTION

Artificial intelligence (AI) algorithms, such as convolutional
neural networks (CNNs) [1], can be used for image classifica-
tion within 1000 categories [2]. However, embedded device
design requires to take into account hardware and power
constraints, besides the performance of the AI algorithm [3]
[4]. As a consequence, embedded AI architectures exhibit
a trade-off between AI’s performance and hardware/power
limitations [5]. In the computer vision field, this problem has
been addressed with different approaches. For instance, [6]
proposed to distribute the signal processing task among the
digital and analog domains for face detection and identifi-
cation. Also, non-conventional and event-based schemes like
“time to first spike (TTFS)” imagers [7], and the “time based
CMOS dynamic vision and image sensor (ATIS)” [8], have
been exploited and adapted to specific application scenarios.
For example, [9] proposed an extension of a TTFS imager,
with an image compression technique, that reduces the events
related data throughput. In addition, [10] reported an ATIS
based system for object tracking applications.

Even though new ideas could improve further embedded
AI’s performance, proof-of-concept circuits are costly to be
fabricated and tested. Then, having a simulation tool that
enables characterizing performances from different (standard
or not) imager types may be critical. Previous efforts have
been done for modeling and simulating analog [11] or mixed
signal architectures [12], in such a way that lower level
models from complex sub-blocks can be used in higher level
simulations. Nevertheless, computer vision AI applications
carry out (pre) processing steps that require to be tested and
verified all together. Pre-processing stages may be linked to the

Fig. 1: Simulation framework block diagram

analog/mixed-signal (A/MS) imaging system, and may have
an impact on the further all-digital processing stages. This
work proposes a framework for behavioral simulations of the
whole signal processing chain: from image acquisition to the
AI’s output. Overall features of this imaging system can be
extracted as a function of its parameters (e.g. classification
accuracy vs. ADC resolution of the imager). Such a tool
would boost research and development of embedded AI on
smart imagers. Lower level device features (e.g. delays, noise,
mismatch, etc.) can be taken into account in further works.
For said purposes, a model which tries to generalize smart
imagers in a modular fashion is presented.

This paper is organized as follows : the second (next) section
gives our general simulation framework, the third section
describes a specific non-conventional imager type that was
modeled. Then, section four shows some simulated results
before conclusions are drawn.

II. SIMULATION FRAMEWORK

The overall simulation framework is presented in fig. 1.
The handwritten digits (0-9) data set MNIST [13] was used
as an example of classification of images between 10 classes
(one for each digit). 8-bit-encoded images from that data set
were considered as the ”ground truth”, and they were used
to feed the imager model. The imager model output was
used as an input for the AI processing stage. The AI part
was implemented with an on-the-shelf framework for machine
learning algorithms: TensorFlow [14]. In that illustration, two
neural network (NN) types (further explained in [15]) were
taken into account: a multi-layer perceptron (MPL) and a CNN



(simple architectures were used for proof of concept). The
MPL was the same as the one used in [16]: the 784 inputs
(pixel’s intensities) were densely connected to 128 neurons
with Rectifier Linear Unit (ReLU) activation, following a 10
neuron layer with softmax activation. The output encoded the
classified class. The CNN was a simplification of the one
explained in [17]: it was composed of a valid convolution
layer (stride of 1) with 32 kernels of dimension 3x3, and with
ReLU activation. The final layer was the same as for the MPL
case.

The code was made in Python: Object Oriented Program-
ming (OOP) was used, since inheritance allows easy repre-
sentation of small variations of imager types. The simulation
algorithm can evaluate imaging system performances (e.g. ac-
curacy for image classification), and it can approximate analog
pre-processing complexity for many imager types (thanks to
a generalized model explained in section III). That can be
mapped to a specific electronic architecture and a respective
power consumption, which will be the subject of a further
work.

Fig. 2: Python modules organization to represent and decom-
pose the imager’s parts.

The code is organized in Python modules that are linked to
electronic parts of one “general imager”. It can be reduced to
a specific and simplified case. The module “imager” contains
models of different imager types as OOP classes. It also uses
(imports) the other modules (by instantiating objects from
those other modules’ classes as imager attributes) to simulate
electronic components behaviors. This sets a module hierarchy
depicted in fig. 2. The module “dataload” loads the dataset and
feeds the frames (images) one by one to the model. Modules
“event” and “arbiter” are used to represent behaviors of, for
example, spiking and/or event based schemes [7]–[10]. The
module “state” holds the pixel’s output voltages, and other
state variables (such as the current time in the simulation)
related to a specific imager. The “stateinterpolation” module
is used for mimicking physical and transient phenomena
associated to photo-current integration. This module can be
extended, so more complex/complete interpolations could be
simulated or emulated. The module “analogtodigital” can
include more electronics besides the ones related to the analog-
to-digital conversion, and it will be further explained in section
III.

In order to include spiking (event based) imagers in the
framework, a general conceptual model, and compatible with
the modules in fig. 2, is presented next.

III. CONCEPTUAL MODEL OF SPIKING IMAGERS

Fig. 3: The five electronic stages of a spiking or general imager

For TTFS imagers, the spike encodes the light intensity
by detecting the time the pixel’s output voltage reaches a
threshold [7]. In the case of the ATIS pixel, the spike encodes
a light intensity change [8]. Our imager model is intended
to simulate all kind of spike-like signals. Fig. 3 gives the
imager signal chain simulated with modules in fig. 2. After an
event is detected, a spike is generated. Pixel output information
(for example, the address of the spiking pixel) could be given
directly as an input to the digital domain for processing, as
in the Address Event Representation (AER) scheme, exploited
by TTFS and ATIS pixels [8], [9]. In addition, pixels outputs
(e.g. a spike, or a voltage) could be pre-processed right
before the analog-to-digital conversion. One example is given
in [6], where data flow is processed in the analog domain
before the digital part. This kind of pre-processing has been
represented (included) in a simplistic way as the “analog to
digital interface” in fig. 3, and its behavior is contained in the
module “analogtodigital” in fig. 2.

A. General Algorithm

Fig. 4: General algorithm to simulate the imager’s behavior.

Thanks to the implementation of the algorithm presented
in fig. 4, transient phenomena (e.g. time-dependent parasitic
effects) can be included in the modules (to be done in further
works). The simulation input is a set of images that could
or could not represent a video stream. After all images are
loaded, they are fed one by one into the simulated imager



model, so those original frames are interpreted as light in-
tensity (ground truth) values encoded in 8-bits. The reset
step is optional, depending on whether the imager is frame
based (i.e. contains a global reset) or not. The imager’s state
starts being updated until an increment variable (for time
representation) reaches the frame period. One can note that
this frame period is related to the imager which was used to
take the original frame set. The state of the imager (i.e. pixel’s
output voltage) is updated with any interpolation rule within
the “stateinterpolation” module. After each update, the time
tracking variable is updated as well. The time step of this
time tracking variable, in comparison to the frame period of
the imager used for making the original data set, is related to
the simulation accuracy. A simple hypothesis, already used in
the literature [7], is that the photo-current is constant during
a frame. Then, the photo-generated current in the pixel will
make its output voltage to decrease linearly after each state
update. The slope is related with the overall pixel optical
efficiency, the electronic signal amplification and the photo-
diode’s capacitance. Those parameters can be measured or
approximated.

The simulation is intended for including an arbitrary level
of specificity for imager models, as long as they stick to
the hierarchy showed in fig. 2. It also aims for modular and
easy-to-codve simulations prior to computational efficiency, as
long as simulation time stays within an acceptable range. For
example, after defining the OPP class “GenericImager”, which
would have as child class “TTFS”, then specific adaptations
of the TTFS architecture (as the one presented in section IV)
can be defined by creating child classes of parent imagers.

Computational consuming matrix operations are vectorized
as it helps to decrease the simulation time. Nevertheless, a
more detailed optimization for decreasing simulation time will
be a subject for further works. Also, the proposed algorithm
may not be the most efficient for all imager types and
simulation objectives. Indeed, that was a sort of trade-off in
order to keep the overall model as general as possible.

IV. SIMULATION EXAMPLE: TTFS IMAGER WITH
INHIBITION

The TTFS imagers scheme has been extended in [9] to in-
clude an image/video compression architecture. The operation
principle is as follows: the whole pixels matrix is divided into
equally sized sub-groups of adjacent pixels called “blocks” [9].
In this work, the notation (No. rows, No. columns) is used to
characterize the size/shape of a block, which contains (No.
rows) * (No. columns) adjacent pixels. One Time Inhibition
Control Circuit (TICC) is assigned to each block. After a
global reset, each TICC waits for the first spiking pixel. When
the first pixel pf of a block B spikes, its output intensity Ip
is read and all output pixels associated to B get that same
value. Then, B is inhibited by the TICC during an inhibition
time tinhib and pf is set to off mode until the next global
reset. During that period, if another pixel in B spikes, it is put
into off mode till the next global reset, and its output value
is not assigned to the output image. Once tinhib has passed,

Fig. 5: MNIST classification accuracy vs No. of pixels N
per block side for an inhibition block of shape (N, N) for
tinhib/tmin = 5.

other spiking pixels are not inhibited. After that, the imager
behavior is as a standard TTFS imager until the next global
reset (i.e. if a non set-to-off pixel pi spikes, its output value is
changed in the output image, and only for its corresponding
address). Three key parameters are the block’s shape, size,
and inhibition time. Their impact for image classification is
illustrated in the next section.

The flow depicted in fig. 1 was used to optimize the
classification performance in accordance with the block’s size
and tinhib. Please notice that, for results showed in figures
5-7, tmin is an imager parameter expressing the “shortest
integration time” [7]. It is assumed to be a constant. Also,
in [7] they explain that it is the minimal time in which a
pixel can output a spike. The hand-written data set MNIST
was used as an example: it is composed of 70 000 8-bit,
gray-scaled images of 28 x 28 pixels. It is divided in 10000
images for testing, and 60000 for training. First, gray scaled
pixel values were “inverted” (i.e. if a pixel’s value was x, its
value was updated to 255.0 - x), since handwritten letters were
made in white over a black background. That would favor the
compression ratio CR = (No. of non-inhibited events) / (max
possible No. of events) for each frame, without reflecting the
worst case. The imager’s simulated output was used as an
input for a MLP and a CNN. Fig. 5 shows the classification
accuracy vs. block shape. Increasing block size has a higher
impact when blocks are relatively small, and it diminishes for
bigger blocks at constant tinhib. NN’s parameters, such as NN
type and layers architecture, allow calculating computational
complexity and memory requirements: 259872 parameters /
201480 multiplications for the CNN, and 102544 parameters
/ 101632 multiplications for the MLP (without taking into
account activations). Fig. 6 shows the behavior of two figures
of merit corresponding to the CR and the Inhibition Complex-
ity Ratio ICR = (No. of TICC units)/(total No. of pixels).
Those figures suggest that increasing the block size decreases



both the number of TICCs and data throughput, which can
potentially reduce power consumption as well. That exhibits an
expected trade-off with classification accuracy, since smaller
block sizes gave better classification performances.

(a) Compression Ratio (CR) (b) Inhib. Complexity Ratio (ICR)

Fig. 6: Figures of merit as a function of (squared) block size
for tinhib/tmin = 5 .

With respect to the previous example, the simulation flow
was slightly modified. This time, the MNIST training data set
was not carried-out by the imager model. That represents a
case of using a compressing imager to classify images with
the NN that has been (pre) trained with a standard (or TTFS)
imager’s output. Within that context, the effect of changing
tinhib is depicted in fig. 7 for a block shape of (2, 7). Obtained
results agree with the ones given by [9], since data throughput
(given by the CR) decreases with increasing tinhib for constant
block size. Moreover, the same trade-off arises between the CR
and classification accuracy.

(a) Classification accuracy (b) Compression Ratio (CR)

Fig. 7: Imager performance when varying tinhib for a block
of shape (2, 7).

V. CONCLUSION

A framework for behavioral simulations of smart imagers
was presented. It is intended to facilitate high level compari-
son and characterization for (non) standard architectures, and
within the context of AI applications. One general and modular
imager model was proposed. As an example, it was reduced
to the case of a specific adaptation of a Time-to-first-spike
imager, reflecting that classification accuracy on the MNIST
dataset kept over 90 % for a block of size (2, 2). The trade-off
between data throughput and classification performance has
been illustrated. Further works could include specific (tran-
sient) models of A/MS electronic blocks. Then, computational

complexity and data throughput could be mapped to power
consumption or frame rates.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[2] O. Russakovsky et al., “Imagenet large scale visual recognition chal-
lenge,” International journal of computer vision, vol. 115, no. 3, pp.
211–252, 2015.

[3] R. C. Çalik and M. F. Demirci, “Cifar-10 image classification with con-
volutional neural networks for embedded systems,” in 2018 IEEE/ACS
15th International Conference on Computer Systems and Applications
(AICCSA), Oct 2018, pp. 1–2.

[4] W. Benjilali, W. Guicquero, L. Jacques, and G. Sicard, “A low-memory
compressive image sensor architecture for embedded object recognition,”
in 2018 IEEE 61st International Midwest Symposium on Circuits and
Systems (MWSCAS), Aug 2018, pp. 881–884.

[5] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An
always-on 3.8µj/86memory on chip in 28nm cmos,” in 2018 IEEE
International Solid - State Circuits Conference - (ISSCC), Feb 2018,
pp. 222–224.

[6] C. Kim, K. Bong, I. Hong, K. Lee, S. Choi, and H. Yoo, “An ultra-low-
power and mixed-mode event-driven face detection soc for always-on
mobile applications,” in ESSCIRC 2017 - 43rd IEEE European Solid
State Circuits Conference, Sep. 2017, pp. 255–258.

[7] X. Guo, X. Qi, and J. G. Harris, “A time-to-first-spike cmos image
sensor,” IEEE Sensors Journal, vol. 7, no. 8, pp. 1165–1175, Aug 2007.

[8] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 db 15µs
latency asynchronous temporal contrast vision sensor,” IEEE Journal of
Solid-State Circuits, vol. 43, no. 2, pp. 566–576, Feb 2008.

[9] C. Dupoiron, A. Verdant, and G. Sicard, “Smart pixel architecture
for low power cmos image sensor: Time-to-first spike with inhibition
mechanism,” in 2017 15th IEEE International New Circuits and Systems
Conference (NEWCAS), June 2017, pp. 49–52.

[10] F. Gómez-Rodrı́guez, L. Miró-Amarante, F. Diaz-del-Rio, A. Linares-
Barranco, and G. J. Robotics, “Real time multiple objects tracking based
on a bio-inspired processing cascade architecture,” in Proceedings of
2010 IEEE International Symposium on Circuits and Systems, May
2010, pp. 1399–1402.

[11] H. Filiol, I. O’Connor, and D. Morche, “Piecewise-polynomial modeling
for analog circuit performance metrics,” in 2009 European Conference
on Circuit Theory and Design, Aug 2009, pp. 237–240.

[12] Y. Blanchard, A. Dupret, and A. Peizerat, “Systemc modelization for fast
validation of imager architectures,” in Proceedings of the 2011 Confer-
ence on Design Architectures for Signal Image Processing (DASIP), Nov
2011, pp. 1–5.

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[14] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[15] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide to
convolutional neural networks for computer vision,” Synthesis Lectures
on Computer Vision, vol. 8, no. 1, pp. 1–207, 2018.

[16] F. Chollet. (2017) Train your first neural network: basic classification.
Internet draft. TensorFlow. Accessed: February 8th, 2019. [Online].
Available: https://tensorflow.org/tutorials/keras/basic classification

[17] E. Allibhai. (2018, October) Building a convolutional neural network
(cnn) in keras. Internet draft. Towards Data Science. Accessed:
February 8th, 2019. [Online]. Available: https://towardsdatascience.com/
building-a-convolutional-neural-network-cnn-in-keras-329fbbadc5f5


