Exploring hierarchical machine learning for hardware-limited multi-class inference on compressed measurements - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Communication Dans Un Congrès Année : 2019

Exploring hierarchical machine learning for hardware-limited multi-class inference on compressed measurements

Résumé

This paper explores hierarchical clustering methods to learn a hierarchical multi-class classifier on compressed measurements in the context of highly constrained hardware (e.g., always-on ultra low power vision systems). In contrast to the popular multi-class classification approaches based on multiple binary classifiers (i.e., one-vs.-all and one-vs.one ), a hierarchical classifier requires only O(log$_2$ C) binary classifiers in a decision tree. In this work, we investigate three clustering methods used to construct balanced clusters at each node thus reducing the depth of the decision tree in order to lower hardware requirements to its minimum. A binary Support Vector Machine (SVM) classifier is then learned on Compressive Sensing measurements at each node of the hierarchical tree. Our results, based on two object recognition databases (AT&T and COIL-100 databases), show the competitiveness of hierarchical classification in terms of hardware requirements (lower memory and computational complexity) as well as its classification accuracy.
Fichier principal
Vignette du fichier
ISCAS_2019_HierarCS_FinalSubmission.pdf (361.68 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

cea-04548802 , version 1 (16-04-2024)

Identifiants

Citer

Wissam Benjilali, William Guicquero, Laurent Jacques, Gilles Sicard. Exploring hierarchical machine learning for hardware-limited multi-class inference on compressed measurements. ISCAS 2019 - 2019 IEEE International Symposium on Circuits and Systems, May 2019, Sapporo, Japan. ⟨10.1109/ISCAS.2019.8702423⟩. ⟨cea-04548802⟩
18 Consultations
18 Téléchargements

Altmetric

Partager

More