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Abstract—This paper explores hierarchical clustering methods
to learn a hierarchical multi-class classifier on compressed
measurements in the context of highly constrained hardware
(e.g., always-on ultra low power vision systems). In contrast
to the popular multi-class classification approaches based on
multiple binary classifiers (i.e., one-vs.-all and one-vs.one [1]), a
hierarchical classifier requires only O(log2 C) binary classifiers
in a decision tree. In this work, we investigate three clustering
methods used to construct balanced clusters at each node thus
reducing the depth of the decision tree in order to lower
hardware requirements to its minimum. A binary Support Vector
Machine (SVM) [2] classifier is then learned on Compressive
Sensing measurements [3] at each node of the hierarchical
tree. Our results, based on two object recognition databases
(AT&T and COIL-100 databases), show the competitiveness of
hierarchical classification in terms of hardware requirements
(lower memory and computational complexity) as well as its
classification accuracy.

Index Terms—Hierarchical learning, compressive sensing, clus-
tering, Support Vector Machine, embedded multi-class inference

I. INTRODUCTION

Over the last decade, the trend in smart embedded systems
consists in developing computational-friendly, always-on de-
cision making systems. To achieve this goal, the design of
new smart systems tends to take advantage of recent advances
in signal acquisition schemes and inference algorithms, well
optimized for low-power systems. Moreover, the design of
this kind of information-retrieval signal processing architec-
tures has to deal with on-chip constraints related to the data
dimensionality and algorithms complexity.

Recently, several alternative sensing schemes based on the
Compressive Sensing theory (CS, [3]), [4]–[7] and dedicated
embedded processing [8]–[10] have been investigated to relax
on-chip constraints. Indeed, CS has emerged as a hardware-
friendly data acquisition scheme that can dramatically reduce
data dimensionality and thus sensor design constraints. On
the other hand, hierarchical machine learning algorithms [11]–
[14] can significantly reduce memory and computational re-
quirements related to an embedded decision making algorithm.
Considering a multi-class image classification system based
on binary classifiers such as SVMs, two popular strategies
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are usually adopted [1]. The first one is called a one-vs.-
all and involves the training of C classifiers for a C classes
problem. The second one is the one-vs.-one strategy that
trains C(C− 1)/2 classifiers for the same C classes problem.
However, thanks to its intrinsic nature, a hierarchical inference
dynamically requires to run only O(log2 C) cascaded binary
classifiers. Thus, for a highly constrained embedded system
(e.g., smart always-on sensor) it seems relevant to investigate
hierarchical strategies on CS measurements to relax hardware
requirements related to signal acquisition (e.g., A/D conver-
sion, power consumption) and data processing (e.g., memory
needs) to perform embedded multi-class inference.

Contributions: In our paper, we focus on hierarchical
learning in the context of highly constrained hardware in
order to reduce hardware requirements related to an embedded
multi-class inference. We introduce new methods to construct
the hierarchical tree to train a hierarchical classifier (binary
decision tree) minimizing as a consequence the number of
decision nodes, end thus, the number of SVM-based affine
transform to perform at the inference. Using classes centroids
and sample labels of a training database, three methods
have been investigated to create two clusters at each node
that are balanced in terms of number of classes: (Method
1): sequential K-means clustering, (Method 2): SVM-based
clustering and (Method 3): a clustering based on the Principal
Component Analysis (PCA). The proposed methods assumes
specific priors on intra-class & inter-class data distribution
to construct the decision tree. In Method 1 we propose a
K-means-inspired [15] algorithm to construct two balanced
clusters limiting the decision tree depth. In Method 2, we
construct balanced clusters that directly maximize the soft
margin of a SVM performed on samples data belonging to
each class-clusters. Finally, Method 3 takes advantage of a
new basis estimated from a PCA [16] that better represents the
classes centroids variability to define a separation threshold
identifying two classes clusters. In the following, we will
present our proposed clustering methods as well as general
considerations on hardware and an evaluation of classification
accuracy for a basic inference problem. In the context of
limited processing and memory resources, we consider CS
measurements as raw data for both training and testing.



(a) Hierarchical learning.

(b) Decision tree.

Fig. 1: An illustration of the hierarchical learning (1(a)) and the inference decision tree (1(b)). In (a) The input multi-class dataset to be classified is presented
at Level 0. A first balanced clustering (2 clusters, each associated to the same number of classes) is performed at Level 1, then a binary classifier is trained.
This process is repeated for each cluster until the construction of a single-class cluster at each terminal node. Here, C(j)

i represents jth cluster at level i. (b)
shows the inference process in the case of a binary hierarchical learning given a test sample (represented by the blue square in this figure).

II. HIERARCHICAL CLASSIFICATION ON CS: KEY
CONCEPTS

Hierarchical learning on CS measurements refers to con-
structing the hierarchical decision tree directly in the CS
domain. Let us consider the sensing matrix A ∈ RM×N

composed of M � N measurement vectors that are properly
designed to perform CS. It allows, for a N -length vector
x ∈ RN , to acquire a CS measurement vector using the
sensing model described as x̃ = Ax ∈ RM . In particular,
CS matrices has to satisfy the Restricted Isometry Property
(RIP) [17] with high probability. From a decision making point
of view, it was shown that the RIP preserves the Euclidean
distance in the CS domain [18] of low complexity signals
(e.g., k-sparse). When dealing with linearly separable convex
sets, the rare eclipse problem [19] [20] provides a lower
bound based on the distance between classes to preserve the
disjointness in the CS domain.

III. PROPOSED HIERARCHICAL LEARNING METHODS

A. Notations and background

Let us consider a database of N -length “vectors” in RN

(e.g., signals with N samples, or images with N pixels)
composed of C classes. This database is separated into
two databases: a “train” set X ∈ RN×n1C , where each
class is composed of n1 samples, associated with labels
l ∈ {1, · · · , C}n1C ; and a “test” set Y ∈ RN×n2C with
unknown labels and composed of n2 samples per class. We
refer to Xj = (Xj

1, · · · ,X
j
n1

) ∈ RN×n1 and Y j =

(Y j
1, · · · ,Y

j
n2

) ∈ RN×n2 for the train and the test sets
restricted to the jth class, respectively. The notation x ∈ X
or x ∈ Xj , means that the sample x is an arbitrary column
of X or Xj , respectively (and similarly for Y ). The mean
vectors of each class (i.e., class centroids) are expressed as
µj = 1

n1

∑n1

i=1X
j
i , for 1 ≤ j ≤ C. The distance matrix

containing the euclidean distances between the mean vectors
will be denoted D = (

∥∥µp − µq

∥∥
2
)1≤(p,q)≤C .

On the other hand, given {(x1, l1) , . . . , (xk, lk) , . . . ,
(x2n1 , l2n1)} ⊂ RN×{−1, 1} samples of two different classes

inX . The binary SVM optimization problem between this two
classes is written as:

{ω̂, b̂, ξ̂} = arg min
ω∈RN ,b,ξ∈R2n1

(
1
2

∥∥ω∥∥2
2

+ λ
∑2n1

k=1 ξk

)
s.t. lk(ω>xk + b) ≥ 1− ξk, ξk ≥ 0, 1 ≤ k ≤ 2n1, (1)

where ω̂ is the weight vector, b̂ is the bias scalar, ξ is the
vertical concatenation of 2n2 slack variables and λ is a reg-
ularization parameter. Once the binary classifier constructed,
the canonical SVM inference can be expressed as an affine
transformation. Thus, for a test sample y ∈ Y the inferred
class cy is given by:

cy = sign(ω>y + b) (2)

Note that in the context of an embedded classification system
based on supervised learning, we generally consider two
stages: i) learning the classifier parameters on a training set,
off-line, ii) performing embedded in-line inference on sensed
data. In this section, we will first present the proposed algo-
rithms to construct a hierarchical tree, the inference algorithm
and finally a discussion on hardware requirements for a basic
inference application on original and compressed data.

B. Training the hierarchical classifier

As depicted in Fig. 1(a), the main idea of a hierarchical
learning is to divide a set of classes into two subsets at every
hierarchical node. In the rest of this subsection we will first
present our proposed methods to create two balanced clusters
in a hierarchical node given a set of classes (Algorithm 1-3).
Secondly, we describe the algorithm used to create the decision
tree (Fig. 1(b)), then used for the inference (Algorithm 4).

1) Sequential K-means clustering (Method 1): Given cen-
troids of a set of classes and their corresponding distance
matrix, Method 1 aims at creating two balanced clusters based
on classes centroids. Inspired by a K-means, the algorithm of
Method 1 is first initialized to the classes centroids maximizing
the Euclidean constrained distances (i.e., c1 and c2). Then,
at each iteration we sequentially assign to each cluster the
center minimizing the Euclidean distance to their centroids.



In addition, c1 and c2 are updated at each iteration, i.e., we
calculate the mean of their clusters, respectively. This process
is repeated until the assignment of all initial centroids. Finally,
the algorithm return two clusters C1 and C2 (see Algorithm 1).
allowing to cluster a set of centroids at a given node.

Algorithm 1 Sequential K-means clustering (Method 1)

1: Input µ ∈ RN×K centroids of K classes in X and D
2: {m1,m2} ← arg maxi,jDij ;
3: c1 ← µm1

; c2 ← µm2
;

4: C1 ← {c1}; C2 ← {c2};
5: µ← µr {µm1

,µm2
};

6: while µ 6= {ø} do
7: m1 ← arg minj

∥∥c1 − µj

∥∥
2

;
8: m2 ← arg minj

∥∥c2 − µj

∥∥
2

;
9: c1 ← µm1

; c2 ← µm2
;

10: C1 ← C1 ∪ {c1}; C2 ← C2 ∪ {c2} ;
11: µ← µr {µm1

,µm2
};

12: c1 ← centroid of C1; c2 ← centroid of C1 ;
13: end while
14: return C1 and C2

2) SVM based balanced clustering (Method 2): In this
second method described in Algorithm 2, the algorithm is also
initialized to the centroids maximizing the Euclidean centroid
distance (i.e., c1 and c2). At each iteration, the SVM (1)
is trained on the samples associated to the current cluster
centroids, then it assigns the class centroid µm1

maximizing
the positive margin to the first cluster centroid c1 and the class
centroid µm2

minimizing the negative margin to c2 using the
affine function presented in (2). An update of each cluster
labeled samples is finally performed at each iteration for the
next SVM training. This process is then repeated until the
assignment of all centroids (with related input class samples).

3) PCA based balanced clustering (Method 3): In the third
method (see Algorithm 3), the clustering is performed thanks
to an orthogonal projection in the PCA [16] domain. The main
idea is to find a new basis that provide a better description
of the data variability to divide the space into two balanced
half-spaces. In the case of the PCA, the projection is defined
as the first principal component of the initial centroids to
avoid under-fitting due to classes distribution. Thus, once the
projection is learned one can construct two clusters such that
the centroids bellow the median of the projection in the PCA
domain are assigned to the first cluster and the ones above this
threshold are assigned to the second. This way, the median
enables a balanced clustering.

Finally, the binary decision tree is recursively constructed
using one of the balanced clustering proposed methods, train-
ing a binary SVM (i.e., (1)) at each node. Algorithm 4,
describes the decision tree construction overall algorithm that
is then used for the inference.

Algorithm 2 SVM based clustering (Method 2)

1: Input K classes in X , centroids µ ∈ RN×K and D
2: {m1,m2} ← arg maxi,jDij ;
3: c1 ← µm1

; c2 ← µm2
;

4: C1 ← {Xm1}; C2 ← {Xm2};
5: µ = µr {µm1

,µm2
};

6: while µ 6= {ø} do
7: associate C1 to {1}n1card(C1);
8: associate C2 to {−1}n1card(C2);
9: for all xk ∈ C1 ∪ C2 :

{ω̂, b̂, ξ̂} = arg minω,b,ξ

(
1
2

∥∥ω∥∥2
2

+ λ
∑

k ξk

)
s.t. lk(ω>xk + b) ≥ 1− ξk, ξk ≥ 0,
1 ≤ k ≤ n1card(C1) + n1card(C2).

10: m1 = arg maxj ω̂
>µj + b̂ ;

11: m2 = arg minj ω̂
>µj + b̂ ;

12: c1 ← µm1
; c2 ← µm2

;
13: C1 ← C1 ∪ {Xm1}; C2 ← C2 ∪ {Xm2};
14: µ = µr {µm1

,µm2
};

15: end while
16: return C1 and C2

Algorithm 3 PCA based clustering (Method 3)

1: Input µ ∈ RN×K centroids of K classes in X
2: SVD [21] : µ = UΣV > s.t. U = [u1 . . .uC−1].
3: θ ← median value of u1

>µ ;
4: C1 ← (µ)j s.t. u1

>µj < θ ;
5: C2 ← (µ)j s.t. u1

>µj ≥ θ ;
6: return C1 and C2

C. Testing the hierarchical-based inference

As previously mentioned, training the hierarchical tree al-
lows to construct a binary decision tree where each path from
a root to a leaf is associated to a decision rule defined by
the binary test (2) learned by a SVM. For a new test sample
y ∈ Y , a decision rule (2) is applied at every node where the
margin sign is used to decide to which next branch the sample
belongs to. Thus, the predicted class is provided by the path
indicated by the successive decisions (see Fig. 1(b)).

D. Embedded resources requirements analysis

Table II summarizes embedded resources requirements re-
lated to a one-vs.-all approach, a one-vs.-one approach and
the proposed binary hierarchical learning approach for a N -
dimensional C-classes classification problem. In the context
of an embedded system, since the training is performed in an
off-line system, we are mainly interested into the requirements
related to the inference part, i.e., memory needs to store ex-situ
learned patterns and computational complexity related to the
inference. In fact, in the case of the one-vs.-all, C classifiers
are learned and thus have to be stored to perform C N -
dimensional projections [2]. For a one-vs.-one, C(C − 1)/2
classifiers are learned. However, when using a hierarchical
approach, the number of classifiers to learn is reduced to C−1



Linear SVM Hierarchical methods (SVM-based tree decision)

One-vs.-one One-vs.-all K-means Our methods
Method 1 Method 2 Method 3

Accuracy (%)

AT&T (w/o CS) 96.15± 1.41 96.75± 1.56 90.07± 2.51 89.35± 3.30 92.87± 2.44 91.51± 2.27
COIL (w/o CS) 98.32± 1.22 95.76± 1.42 96.40± 1.65 93.06± 2.10 95.10± 1.62 95.07± 1.25
AT&T (w/ CS?) 95.52± 1.61 95.03± 1.56 87.80± 2.35 84.75± 3.91 90.41± 2.44 89.85± 2.50
COIL (w/ CS?) 97.82± 1.02 93.71± 1.32 94.17± 1.57 87.30± 3.03 92.09± 1.83 91.82± 1.41

Nb. of SVMs?? AT&T 40 780 8 6 6 6
COIL 32 496 7 5 5 5

TABLE I: Classification accuracy of our methods compared to one-vs.-all approach, one-vs.-one approach and the K-means based hierarchical learning. ?with
a Compression Ratio of 25%. ??Number of projections to perform at the inference stage.

Algorithm 4 Decision tree construction

1: Input training set X
2: level← 1 and node← 1
3: create two balanced clusters C(1)1 ; C(2)1 on X;
4: solve (1) on C(1)1 and C(2)1 to learn SVM (1)

1 classifier
5: while level 6= ceil(log2 C)− 1 do
6: level← level + 1 and node← 2level−1

7: for n in 1 to node do
8: if card(C(n)level) 6= n1 then
9: Create two balanced clusters C(2n−1)level+1

and C(2n)level+1 on C(n)level

10: solve (1) on C(2n−1)level+1 and C(2n)level+1 to learn
SVM

(n)
level+1 classifier

11: end if
12: end for
13: end while

to perform only dlog2 Ce N -dimensional projections (M -
dimensional in the CS case). Table II exhibits the underlying
motivations related to the proposed hierarchical approach. It
clearly show the interest of hierarchical learning in particular
when combined with CS. In fact, when learning the hierar-
chical classifier on CS measurements hardware requirements
are dramatically reduced thanks to the signal independent
dimensionality reduction performed by CS.

Learning Memory Computing
One-vs.-all NC O(NC)
One-vs.-one NC(C − 1)/2 O(NC(C − 1)/2)
Hierarchical N(C − 1) O(N log2 C)

Hierarchical+CS M(C − 1) O(M log2 C)

TABLE II: A comparison of embedded resources requirements of hierarchical
learning approach compared to the one-vs.-all and one-vs.-one strategies.

IV. SIMULATION RESULTS

To evaluate the accuracy (correct predictions over the total
number of test samples) and its standard deviation (100
batches) of the proposed methods (cf., Table I), two object
classification databases have been used: AT&T database [22]
(40 classes, 10 faces per class) and COIL-100 [23] database
(32 classes randomly selected out of 100, 72 images per class).
In addition, each image is resized to a 32× 32 resolution via
bicubic interpolation and standardized using the feature scaling

method [24] to stay in the scope of a highly constrained image
sensor hardware. Two test-benchs are proposed. In the first
one, simulations are performed in the signal domain using
the original training and test sets (i.e., X ∈ RN×n1C and
Y ∈ RN×n1C respectively). In the second one, simulations
are performed in the CS domain using the sensing matrix
A ∈ RM×N . In this case, the training and test sets are
acquired using the matrix A and the hierarchical algorithms
are constructed in the CS domain. For the sake of simplicity,
simulations are performed using a sensing matrix A following
a Bernoulli law with a probability of success of 0.5 [25]
with a compression ratio of 25% (i.e., M = N/4). We stress
that for an embedded application [7] the sensing matrix can
be generated ”on-the-fly” thanks to digital pseudo-random
generators (e.g., LFSR [4], cellular automaton [6]).

In terms of classification accuracy, hierarchical learning yet
reduces the average algorithm accuracy by ≈ 3% on original
data and ≈ 4% on CS data compared to a straight linear SVM.
On the other hand, regarding the decision tree depth (i.e.,
number of decisions to compute at the inference), our methods
deeply outperform the one-vs.-all method, and even more the
one-vs.-one. Indeed, in the case of the AT&T, the number of
projections to be performed is divided by ≈ 6.6 (6.4 for COIL-
100) compared to a one-vs.-all strategy. Finally, it means an
equivalent reduction in terms of algorithm complexity and thus
power consumption, considering hardware implementation.
Note that, the impact of CS is twofold, reducing the size of the
SVM coefficients to store and the total amount of multiply-
accumulate (MAC) operations to perform on-chip.

V. CONCLUSION

In this paper, we proposed three balanced clustering meth-
ods allowing for hierarchical SVM learning. Simulation results
based on two databases show the great interest of our proposed
approach in terms of hardware requirements (computational
complexity and memory access needs) with an acceptable
impact on the classification accuracy. In addition, when com-
bined with CS, the overall memory and on-chip MAC opera-
tion needs can even be lowered thanks to signal-independent
dimensionality reduction. This paper demonstrates that low-
power hardware constrained decision making algorithms can
fully take advantage of a hierarchical learning approach com-
bined with CS if the classification accuracy doesn’t require to
be excessively high (e.g., low-power sensing nodes).
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