An Analog-to-Information VGA image sensor architecture for support vector machine on compressive measurements - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Communication Dans Un Congrès Année : 2019

An Analog-to-Information VGA image sensor architecture for support vector machine on compressive measurements

Résumé

This work presents a compact VGA (480 × 640) CMOS Image Sensor (CIS) architecture with dedicated end-ofcolumn Compressive Sensing (CS) scheme allowing embedded object recognition. The architecture takes advantage of a lowfootprint pseudo-random data mixing circuit and a first order incremental Sigma-Delta (Σ∆) Analog to Digital Converter (ADC) to extract compressed features. The proposed CIS achieves an object recognition accuracy of ' 93% on the Georgia Tech face recognition database (GIT, 10 classes out of 50) thanks to a linear Support Vector Machine (SVM) classifier implemented by an optimized Digital Signal Processing (DSP). We stress that the signal independent dimensionality reduction performed by our dedicated CS scheme (1/480) allows to dramatically reduce memory requirements (≈ 32 kbit) related –in our case– to the ex-situ learned affine function of the linear SVM.
Fichier principal
Vignette du fichier
ISCAS_2019_ClassifCS_FinalSubmission.pdf (597.71 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

cea-04548791 , version 1 (16-04-2024)

Identifiants

Citer

Wissam Benjilali, William Guicquero, Laurent Jacques, Gilles Sicard. An Analog-to-Information VGA image sensor architecture for support vector machine on compressive measurements. ISCAS 2019 - IEEE International Symposium on Circuits and Systems, May 2019, Sapporo, Japan. ⟨10.1109/ISCAS.2019.8702325⟩. ⟨cea-04548791⟩
17 Consultations
14 Téléchargements

Altmetric

Partager

More