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Abstract—This work presents a compact VGA (480 × 640)
CMOS Image Sensor (CIS) architecture with dedicated end-of-
column Compressive Sensing (CS) scheme allowing embedded
object recognition. The architecture takes advantage of a low-
footprint pseudo-random data mixing circuit and a first order
incremental Sigma-Delta (Σ∆) Analog to Digital Converter
(ADC) to extract compressed features. The proposed CIS achieves
an object recognition accuracy of ' 93% on the Georgia Tech
face recognition database (GIT, 10 classes out of 50) thanks to
a linear Support Vector Machine (SVM) classifier implemented
by an optimized Digital Signal Processing (DSP). We stress that
the signal independent dimensionality reduction performed by
our dedicated CS scheme (1/480) allows to dramatically reduce
memory requirements (≈ 32 kbit) related –in our case– to the
ex-situ learned affine function of the linear SVM.

Index Terms—embedded object recognition, compressive sens-
ing, pseudo-random permutations, Sigma-Delta, SVM

I. INTRODUCTION

The last decade has testified a deep theoretical study of
CS [1] for both signal recovery and decision making prob-
lems [2]. In particular, CS has emerged as a hardware-friendly
data acquisition scheme. However, in contrast to the common-
used sensing scheme, reconstructing a signal from its CS
measurements basically requires nonlinear operations making
signal recovery more complex. In fact, a wide variety of ap-
plications only requires to extract the meaningful information.
This statement can enable great achievements in the design of
smart sensors that are more compact and energy efficient.

Inspired by the potential of CS, the CIS community has
focused on implementing on-chip sensing scheme to deal with
either hardware or algorithm constraints for image rendering.
As one of the earlier CIS implementations, [3], [4] exploit
random convolutions in the focal plane to extract CS mea-
surements. The proposed sensing model gives the priority
to a fast and efficient image reconstruction but involving
high on-chip complexity. In [5], the concept of incremental
Σ∆ is introduced to perform summation/averaging operation
during A/D conversion. This sensor has the advantage of using
an optimized 4T pixel architecture while performing end-of-
column CS without major modification of a canonical sensor
design. Finally, [6] describes a scalable and low-complexity
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Fig. 1: Image sensor top-level architecture.

column based CS using a Cellular Automaton (CA) that shows
a chaotic behavior to on-the-fly generate the sensing matrix.

To meet decision making, analog pre-processing as well as
dedicated System-on-Chip (SoC) are explored to deal with
inference problems in the context of low-power CIS. For
example, [7], [8] propose an event driven face recognition
SoC based on Haar-like filtering and a Convolutional Neural
Network (CNN) processor. On the other hand, [9] deals with
memory requirements to implement face recognition using
a Principal Component Analysis (PCA) to extract features
combined with a nonlinear SVM. We note, however, that these
works focus on optimizing circuit design to achieve low-power
processing; they do not address design constraints related to
image acquisition such as data dimensionality or ADC clock.

In this paper we propose a compact VGA CIS architecture to
address the embedded object recognition task in the context of
smart low power vision systems. Our contribution is twofold:
First, an end-of-column dedicated CS sensing scheme is pro-
posed based on independent per-row permutations allowing the
reuse of a standard rolling shutter acquisition scheme as well
as an array of optimized 4T pixels. Second, a DSP architecture
is proposed to perform embedded decision making thanks to
a linear SVM. Our architecture successfully recognizes VGA
images from a single scan read-out (i.e., only 640 measure-
ments) while reducing memory requirements to the ex-situ
learned patterns. This on-chip decision making scheme is thus
an appealing approach for highly-constrained applications.



II. DECISION MAKING ON CS: KEY CONCEPTS

Decision making on CS measurements refers to solving an
inference problem directly in the CS domain. Let us consider
the random sensing matrix A ∈ Rm×n made of m � n
measurement vectors. It allows, for a vector x ∈ Rn, to
acquire CS measurements using the sensing model described
as x̃ = Ax ∈ Rm. In particular, if we aim to reconstruct
x from x̃ we must ensure that the matrix A satisfies the
Restricted Isometry Property (RIP) with high probability [10].
Moreover, from a decision making point of view, the RIP
guarantees to preserve the Euclidean distance between low
complexity signals (e.g., k-sparse) in the CS domain [11].
This allows to perform decision algorithms in the CS domain
since pairwise distance is a primitive operation in numerous
classification and machine learning algorithms. For instance,
when dealing with linearly separable convex sets, the rare
eclipse problem [12], [13] explains the minimal m to reach
to preserve the disjointness of two classes in the CS domain.
These theoretical results, as well as general considerations on
the on-chip complexity and power consumption issues lead
us to propose a novel CS-driven CIS combined with a linear
SVM to perform near sensor inference in the CS domain.

To perform our supervised embedded inference, we propose
a two-stages processing: First, an SVM classifier is learned in
an off-line system on a compressed training set X̃ ∈ Rm×n1C

composed of C classes, each with n1 samples, associated with
labels l ∈ {1, · · · , C}. Second, the embedded inference is
performed on a compressed test set Ỹ ∈ Rm×n2C made of
Cn2 samples with unknown labels. Here, both the training
and test sets are acquired by the proposed architecture using
the specific sensing matrix A described in Sec. III. In the
following, x̃ and ỹ refer to an arbitrary column of X̃ and
Ỹ respectivelly. In order to learn a multiclass SVM classifier
[14], C binary soft margin classifiers are trained to construct
a boundary decision for each class versus the others. Using
this strategy called one-vs-all, a positive label is assigned to
the samples in a class and a negative to the others, i.e., the
label lij equals 1 if the jth sample belongs to class i, and −1
otherwise. Mathematically, for each 1 ≤ i ≤ C, we estimate
a normal vector d̂i ∈ Rm, an offset b̂i ∈ R and penalties
ξ̂ ∈ Rn1 , where λ is an inner regularization parameter:

{d̂i, b̂i, ξ̂i} = arg min
d∈Rm,b,ξ∈Rn1

(
1
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)
s.t. lij(d

>x̃i
j + b) ≥ 1− ξj , ξj ≥ 0, 1 ≤ j ≤ n1. (1)

Let us define the gain matrix D̂ := (d̂1, · · · , d̂C)>, i.e., the
vertical concatenation of d̂i and b̂ := (b̂1, · · · , b̂C)> the offset
vector. Once the C classifiers are constructed, a winner-takes-
all strategy allows to assign a compressed sample ỹ to the
class c maximizing the margin, i.e.,

c = arg max1≤i≤C d̂
>
i ỹ + b̂i. (2)

In the next section, we present our proposed architecture to
implement SVM inference on extracted CS features.

III. PROPOSED IMAGE SENSOR ARCHITECTURE

In this work, we propose an architecture for which the sens-
ing matrix A corresponds to applying a random modulation
ϕ ∈ {±1}nvnh to the nv×nh observed image, and performing
a column random permutation which is different for each
sequentially selected row (see Fig. 1). The purpose of the
modulation is to center CS matrix expectation and thus center
measurements distribution, while the permutations increase the
information content (diversity) of each measurement. There-
fore, for a per-row vectorized image α ∈ Rnvnh :

α̃ = P (ϕ ◦α) ∈ Rnh , (3)

where P = (P 1, . . . ,P nv
) ∈ {0, 1}nh×nhnv is the hor-

izontal concatenation of nv random permutation1 matrices
P k (1 ≤ k ≤ nv), and ◦ is the Hadamard product.
We easily show that, thanks to the ±1 pre-modulation,
E ‖P (ϕ ◦ (α−α′))‖2 = ||α−α′||2, i.e., the implemented
CS scheme preserves in expectation the distance between two
different images (showing that the resulting sensing matrix
respects the RIP is postponed to a future work).

For the sake of simplicity, the permutations are implemented
before modulation, which is equivalent in terms of function-
ality, i.e., the complete matrix A such that x̃ = Ax can
be written using the Kronecker product ⊗, where 1nh

is the
vector of ones:

A = (1nh
⊗ ϕ̄>) ◦ P , with ϕ̄k = P kϕk ∈ {±1}nh , (4)

where for any u ∈ Rnvnh (e.g., ϕ or ϕ̄),
u := (u>1 , · · · ,u>nv

)>, with uk ∈ Rnh . We note that
the models (3) and (4) are easily extended to a multi-scan
mode, i.e., by collecting observations for different generations
of P and ϕ. Moreover, sub-scan mode is reached by
randomly sub-sampling α̃.

The proposed architecture comprises a (nv = 480)× (nh =
640) pixel array combined with a Shift Register (SR) for
rolling shutter, a Pseudo Random-Permutations (PRP) circuit,
a column parallel dedicated pseudo-random modulation first
order incremental Σ∆ (RMΣ∆), and an optimized DSP for
embedded classification on CS measurements (using pseudo-
random realization of P and ϕ). Thus, in a rolling shutter
acquisition mode, the object recognition is achieved accord-
ing to the following steps. First, a pseudo-random columns
permutation of the selected row is performed by the PRP
circuit. As shown in Fig. 2(a), a pseudo-random permutation
is accomplished using a multi-level permutation process com-
posed by a fixed pseudo-random scrambling and a 6-stages
butterfly network [15]. For each butterfly stage, voltage values
are partitioned into blocks and swapped or not via a series of
2 : 1 mux-based circuits (i.e., Btfly 64. . . Btfly 2 in 2(b)).
The block size varies from 64 (Btfly 64) to 2 (Btfly 2). In
addition, to generate independent permutations, a 18 bit CA
Pseudo-Random Generator (PRG) following the 30th Wolfram
rule [16] is used to activate or not the different stages (Fig.

1The random model here corresponds to pick each P k independently and
uniformly at random amongst the nh! possible permutations of {1, . . . , nh}



(a) Pseudo-Random Permutations (PRP) circuit. (b) Butterfly circuits of the
first and second stage.

(c) 18 bit cellular au-
tomaton PRG following
the 30th Wolfram rule.

(d) Random modulation Σ∆ converter (RMΣ∆). (e) 5-bit ↑↓ conditional counter.

(f) Digital signal processing (DSP). (g) Argmax circuit.

Fig. 2: The proposed architecture: (a) Pseudo-Random Permutations (PRP) circuit; (b) First and second stages of the Butterfly network; (c) Pseudo-random
bit generator; (d) Modulated Σ∆; (e) Conditional counter (f) Dedicated DSP; (g) arg max circuit.

2(c)) via a single control bit per-stage. In terms of circuit
area, the proposed PRP reduces dramatically connection lines
(640 + 6× 1280 ' 8k) compared to a pseudo-random 640-to-
640 multiplexer (640× 640 ' 409k connections).

Second, inspired by the incremental Σ∆ [17], [18] which
has the potential to perform both averaging and quantiza-
tion simultaneously [5], [19], [20], a dedicated incremental
RMΣ∆ is proposed to perform pseudo-random modulation,
per-column summation and A/D conversion (Fig. 2(d)). Thus,
each column of the PRP is connected to one RMΣ∆ allowing
a column-parallel processing. However, the main advantage of
the proposed architecture is the ability to deal with pseudo-
random ±1 modulations, highly desirable in CS applications.
This is achieved thanks to a double-path integration (one
integrator for each sign) controlled by a nv-bit SR (each cell
control one RMΣ∆). Thus, for a column i, the voltage outputs
Vpi

of the PRP are integrated sequentially by the desirable
integrator following the SRi bit. The output of the comparator
then enables the incrementation or decrementation (for a +/−
modulation respectively) of the ↑↓ counter. After nv cycles of
the rolling shutter SR, 640 (i.e., 1/480 compression ratio) 9-
bits (log2(nv)) CS measurements are produced with only one
clock cycle for each row, meaning that we can dramatically
reduce power consumption to perform the inference.

Once the CS measurements are extracted, the SVM in-
ference problem in (2) can be performed by the DSP (Fig.
2(f)). Thus, the CS measurements vector is first multiplied by
the gain matrix D̂ and then added to the offset vector b̂ to
extract a vector of length C. Finally, the arg max operation
is implemented following a dichotomic approach [21] using a
series of 2 : 1 multiplexers, each one controlled by a bitwise
comparator. As depicted in Fig. 2(g), in the first stage we
compare two-by-two the values of the resulting vector (20-
bits) and output the max value and its position (20 + 1 bits)
based on the output of the comparator. This is repeated until
the last stage to get a 24-bits value where the 4 MSB bits
represent the position of the max and thus the predicted class.

IV. SIMULATIONS AND PERFORMANCE OPTIMIZATION

To demonstrate the efficiency of the proposed architecture,
the GIT database [22] is used to learn the SVM patterns
(see Sec. II). To fit within specifications of the proposed
architecture, each image is resized to a VGA resolution via
bicubic interpolation and then subsampled using a simulated
RGB Bayer filter. For high-level simulations, we randomly
select C = 10 classes, 10 samples per class to construct the
training set and n2 = 5 samples per class for the test. The
training set is then used to train the SVM on compressively
acquired images according to the CS modeled by (3).



(a) Real data disribution at the output of
the column parallel Sigma-Delta.

(b) Probability of error ar the output of
each Sigma-Delta.

(c) Probability of classification error vs. ac-
curacy.

(d) Number of scans vs. accuracy. (e) Distribution of the entries of D̂. (f) Distribution of b̂ values.

Fig. 3: Extracted plots of the simulated architecture: (a) Data distribution at the output of the column parallel Sigma-Delta; (b) The probability of error at the
output of each Sigma-Delta; (c) The probability of classification error vs. accuracy; (d) The classification accuracy in function of the number of measurements;
(e) and (f) represent the distribution of the entries of D̂ and the components of b̂ respectively.

RGB Bayer CS measurements Our sensing scheme Our sensing scheme Our sensing scheme Our simulated architecture
without CS Bernoulli distribution with Matlab randperm implem. without quantization without saturation (with quant. & sat.)

91.6 % (≈ 300k) 87.8 % (≈ 600) 93.4 % (≈ 600) 94 % (≈ 600) 93.2 % (≈ 600) 93.2 % (≈ 600)

TABLE I: Recognition accuracy for different simulations (levels of description of our architecture). Between parenthesis reported the number of measurements.

As the proposed CIS is designed to meet requirements of
highly constrained hardware, its performance can typically be
optimized thanks to the prior knowledge on the distribution
of the CS measurements (Fig. 3(a)), the enteries of D̂ (Fig.
3(e)) and the components of b̂ (Fig. 3(f)). First, given the
distribution of CS measurements, the resolution of the RMΣ∆
can advantageously be reduced by saturating the ↑↓ counter
in Fig. 2(d) to a lower number of bits instead of 9-bits by
benefiting of the intrinsic property of the incremental Σ∆
(log2(nv)) [5]. Thus, as shown in Fig. 3(b), the probability
of error at the output of RMΣ∆ tends to 0 for a resolution of
5-bit of the CS measurements. Moreover, the trade-off between
CS measurements resolution and the classification accuracy is
also taken into account in Fig. 3(c). We clearly observe that
the classification error floors to 6% from a 5-bit resolution.

On the other hand, to perform embedded inference, the
matrix D̂ and the offset vector b̂ have to be stored within
an on-chip memory. Thus, as the histogram of the matrix D̂
have a peaked distribution (cf., Fig. 3(e)), we have chosen a
uniform quantizer using a dynamic range limited to 2/3 of the
whole dynamic of the matrix. However, as the offset vector b̂
has a flattened distribution, the uniform quantizer is applied on
the whole range covered by the components b̂. Thus, regarding
the distribution and the dynamic range of D̂ and b̂, we have
empirically chosen to set a signed 4-bit resolution for the
entries of D̂ and a signed 12-bit for the components of b̂.
Finally, the memory requirements to store the SVM affine

function in order to perform object recognition on the GIT
database (10 classes) is limited to 10 × 640 × 5 + 10 × 13
bits ' 32 kbit for a single-scan readout while achieving a
satisfactory classification accuracy (' %93, Tab. I). Fig. 3(d)
stands for the classification accuracy as a function of the
number of measurements (scans). It shows that the accuracy
ceils to ' %93 from 640 measurements (i.e., a single-scan).
For only 64 measurements (i.e., randomly sub-sampling the
one-scan measurements at 1/10 sampling rate), the accuracy
still reaches ' %70 for the 10-class inference problem.

V. CONCLUSION

This paper presents a dedicated end-of-column CS sensing
scheme to reduce data dimensionality using a low-footprint
pseudo-random permutations circuit and a one-clock cycle
low resolution (5-bit) RMΣ∆. The signal independent dimen-
sionality reduction of CS (1/480 compression ratio) allows
to reduce memory requirements to perform SVM inference
(≈ 32 kbit) while keeping an acceptable classification accu-
racy of ≈ 93%. Interestingly, the proposed architecture can
even reduce the number of extracted measurements by sub-
sampling the one-scan measurements while still achieving a
reasonable accuracy for example for an ultra-low power target
application. In the future work a circuit implementation will be
developed at schematic and layout level using well optimized
4T pixels and a standard image sensor technology design (e.g.,
0.18 µm). In this test chip we plan to embed several additional
features such as CS on image descriptors.
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