Reconstruction, analysis and interpretation of posterior probability distributions of PET images, using the posterior bootstrap - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Physics in Medicine and Biology Year : 2021

Reconstruction, analysis and interpretation of posterior probability distributions of PET images, using the posterior bootstrap

Abstract

The uncertainty of reconstructed PET images remains difficult to assess and to interpret for the use in diagnostic and quantification tasks. Here we provide (1) an easy-to-use methodology for uncertainty assessment for almost any Bayesian model in PET reconstruction from single datasets and (2) a detailed analysis and interpretation of produced posterior image distributions. We apply a recent posterior bootstrap framework to the PET image reconstruction inverse problem and obtain simple parallelizable algorithms based on random weights and on existing maximum a posteriori (MAP) (posterior maximum) optimization-based algorithms. Posterior distributions are produced, analyzed and interpreted for several common Bayesian models. Their relationship with the distribution of the MAP image estimate over multiple dataset realizations is exposed. The coverage properties of posterior distributions are validated. More insight is obtained for the interpretation of posterior distributions in order to open the way for including uncertainty information into diagnostic and quantification tasks
Fichier principal
Vignette du fichier
OpenAccess_MarinaFilipovic_2021_Phys._Med._Biol._66_125018.pdf (4.77 Mo) Télécharger le fichier
Origin : Publication funded by an institution

Dates and versions

cea-03841301 , version 1 (10-11-2022)

Licence

Attribution

Identifiers

Cite

Marina Filipović, Thomas Dautremer, Claude Comtat, Simon Stute, Eric Barat. Reconstruction, analysis and interpretation of posterior probability distributions of PET images, using the posterior bootstrap. Physics in Medicine and Biology, 2021, 66 (12), pp.125018. ⟨10.1088/1361-6560/ac06e1⟩. ⟨cea-03841301⟩
37 View
40 Download

Altmetric

Share

Gmail Facebook X LinkedIn More