Exponentially convergent non overlapping domain decomposition methods for the Helmholtz equation - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2020

Exponentially convergent non overlapping domain decomposition methods for the Helmholtz equation

Résumé

In this paper, we develop in a general framework a non overlapping Domain Decomposition Method that is proven to be well-posed and converges exponentially fast, provided that specific transmission operators are used. These operators are necessarily non local and we provide a class of such operators in the form of integral operators. To reduce the numerical cost of these integral operators, we show that a truncation process can be applied that preserves all the properties leading to an exponentially fast convergent method. A modal analysis is performed on a separable geometry to illustrate the theoretical properties of the method and we exhibit an optimization process to further reduce the convergence rate of the algorithm.
Fichier principal
Vignette du fichier
Collino.pdf (2.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-03052206 , version 1 (22-12-2020)

Identifiants

Citer

Francis Collino, Patrick Joly, Matthieu Lecouvez. Exponentially convergent non overlapping domain decomposition methods for the Helmholtz equation. ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54 (3), pp.775-810. ⟨10.1051/m2an/2019050⟩. ⟨cea-03052206⟩
102 Consultations
74 Téléchargements

Altmetric

Partager

More