A 10Gb/s Si-photonic transceiver with 150μW 120μs-lock-time digitally supervised analog microring wavelength stabilization for 1Tb/s/mm 2 Die-to-Die Optical Networks
Abstract
Silicon photonics has allowed cost reduction and performance improvement for optical interconnects for the past few years, and short-reach wavelength-division-multiplexed (WDM) links have recently emerged thanks to the introduction of microring modulators and filters [1-5]. Nevertheless, the promise of optical networks-on-chip foreseen in [1] has to face the integration challenges of scalable low-footprint elementary drivers and robust operation under heavy thermal stress due to self-heating of the cores with varying loads. This work presents a 3D-stacked CMOS-on-Si-photonic transceiver chip, which includes base building-blocks targeting die-to-die WDM optical communication for multicore processors: 10Gbps 2.5V pp OOK modulator driver, associated receiver, and digitally-supervised analog wavelength stabilization using microring heaters and remapping for 0-to-90°C operating range, for a total footprint of 0.01mm 2 per microring.
Origin : Files produced by the author(s)