Handling criticality mode change in time-triggered systems through linear programming
Résumé
Mixed Criticality helps reducing the impact of pessimistic evaluation of Worst Case Execution Time for real-time systems. This is achieved by hosting lowcriticality tasks on a same hardware architecture in addition to the classical high-critical tasks, when considering two-criticality levels. The Time-Triggered paradigm (TT) is a classical approach within industry to develop high-criticality tasks. Extending TT systems in order to integrate the support of MC scheduling therefore requires the generation of two schedule tables, one for each criticality level. However, a switch between the schedule tables must not lead to an unschedulable situation for the high-criticality tasks. In this work, we show how a linear programming approach can be used to generate these schedule tables in a consistent way for dual-critical problems on multiprocessor architectures.