Simultaneous segmentation and classification of human actions in video streams using deeply optimized Hough transform - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Article Dans Une Revue Pattern Recognition Année : 2014

Simultaneous segmentation and classification of human actions in video streams using deeply optimized Hough transform

Résumé

Most researches on human activity recognition do not take into account the temporal localization of actions. In this paper, a new method is designed to model both actions and their temporal domains. This method is based on a new Hough method which outperforms previous published ones on honeybee dataset thanks to a deeper optimization of the Hough variables. Experiments are performed to select skeleton features adapted to this method and relevant to capture human actions. With these features, our pipeline improves state-of-the-art performances on TUM dataset and outperforms baselines on several public datasets.
Fichier principal
Vignette du fichier
chan-hon-tong2014.pdf (482.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

cea-01818435 , version 1 (03-01-2019)

Identifiants

Citer

Adrien Chan-Hon-Tong, Catherine Achard, Laurent Lucat. Simultaneous segmentation and classification of human actions in video streams using deeply optimized Hough transform. Pattern Recognition, 2014, 47, pp.3807-3818. ⟨10.1016/j.patcog.2014.05.010⟩. ⟨cea-01818435⟩
91 Consultations
266 Téléchargements

Altmetric

Partager

More