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Abstract

Most researches on human activity recognition do not take into account the
temporal localization of actions. In this paper, a new method is designed to
model both actions and their temporal domains. This method is based on a
new Hough method which outperforms previous published ones on honeybee
dataset thanks to a deeper optimization of the Hough variables. Experiments
are performed to select skeleton features adapted to this method and relevant
to capture human actions. With these features, our pipeline improves state-
of-the-art performances on TUM dataset and outperforms baselines on several
public datasets.

Key words: human actions, segmentation, classification, video streams, Hough

1. Introduction

Human activity recognition is becoming a major research topic (see [1, 30]
for reviews). The ability to recognize human activities would enable the de-
velopment of several applications like gestures based interfaces/interactions or
multimedia data mining on web data. However, requirements for human activ-
ity recognition systems depends on the targeted applications. For example, on
one hand, human action recognition systems for data mining on web data [23]
deal with heterogeneous contents, heterogeneous resolutions and severe camera
motions, but are not expected to be real time or to deal correctly with all the
web database content. On the other hand, systems for gestures based interac-
tion [31] deal with homogeneous videos acquired under controlled setting but
need the highest possible accuracy and real time capacity.

Action recognition in natural and unconstrained videos has known a turning
point from [33], driven by progresses in object recognition in image. For this
task, most of the state-of-the-art approaches [42] are based on Bag Of Words



[35] (BOW ) and Support Vector Machine [10, 8] (SVM ) pipeline that captures
the link between low-level features e.g. spatiotemporal interested points [33]
(STIP) or trajectories of interested points [37, 42] and actions through a learning
process.

Gestures based interaction is independently reaching a turning point with
the release of active camera, such as the Kinect, providing suitable information
for human action recognition like depth map [27], and even, under controlled
setting, the skeleton of the subject [31] (see [14] for a review).

Beside gestures based interaction and offline web data annotation, a lot of
applications are emerging like ambient intelligence [29] or medical video pro-
tection [47]. A typical example is the detection of daily actions to monitor
people with a limited autonomy (elderly or disabled person) at home. Indeed,
the distribution of their daily actions during a day or a week has a medical
relevancy.

This last kind of applications introduces new challenges which are addressed
in this paper. In particular, the temporal location of an action is as relevant as
the action itself in video based monitoring. It is not the case in human action
recognition in web databases, where the goal is to annotate a whole (i.e. seg-
mented) video. For such new applications, the aim is simultaneous classification
and temporal localizations of actions. Thus, approaches like BOW+SVM which
discard temporal information can not deal with such a challenge. As there is no
clear consensus in literature about how this localization should be evaluated, we
focus in this paper, on determining at each time what action is performed by
an actor among a set of actions. This task is called segmentation in this paper.

Moreover, vision based monitoring systems need to take into account the
temporal context. In this way, they oppose gesture based interaction systems
where features extracted in a specific time are enough to decide the correspond-
ing action. In particular, the duration of an action is about two orders of
magnitude larger in vision based monitoring data than in interface/interaction
ones: the maximal size of an action is less than a couple of second for gestures
based mouse (e.g. [19]) or 4s in [31] (dance move) against around 30s in [39, 43]
(setting a table) and around 2 minutes for [38] (cooking, working at computer).

Among the introduced challenges, daily motions present a higher variability
than interface ones where subjects try to perform predefine motions. Thus,
direct template matching [24, 31] may not be efficient for daily actions. Also,
skeleton extraction is not as accurate for daily action recognition as for gestures
based interface. However, considering the large academic efforts to deal with
general pose estimation [12, 34], we expect the skeleton to be available in the
future in medical surveillance field, and thus, we still rely on skeleton features
in this paper.

To tackle these challenges, we introduce two contributions which are pre-
sented after related works (section 2). First, in section 3 and 4, we introduce
a new optimized Hough Transform method and present experiments where this
new method outperforms previous Hough Transform ones. Then, in section 5,
we perform experiments which highlight the relevancy of this method for human
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action segmentation in video streams, as it improves state-of-the-art results on
several public datasets using skeleton based features. Perspectives opened by
these contributions are presented together with conclusions (section 6)

2. Related works

Most related works are based on graphical model like [38, 48, 22, 26]. In
[38], a two-layered Maximum Entropy Markov Model (MEMM ) is built on pose
based features such as proximity of hands with other articulations, positions of
articulations, speeds. In [22], recognition is performed by an Action Graph based
on velocity features. In [48], Hidden Markov Model (HMM ) is learnt on skeleton
representations. The ability of latent variables to extract middle level features
by clustering similar successive features is currently a major improvement axis
[44, 36] for such Conditional Random Field [18] (CRF ) pipelines. Such middle
level features are also considered in [40] in a naive Bayesian classifier context
and lead to performance improvements.

Besides graphical models, works like [15] deal with the segmentation chal-
lenge by padding the video with windows on which a BOW+SVM pipeline is
applied. By dynamic programming, an optimal padding of the video is com-
puted, thus we call this method OP (for optimal padding). Hough Forest can
also perform such segmentation as in [49], where skeleton stream patches are
densely extracted and clustered by trees formed with weak binary classifiers
based on distances between articulations. Then, each patch votes, and vote
agglomeration provides a segmentation after smoothing.

In addition, an important point to mention is that the rising of such methods
is slowed down by the few public databases available.

2.1. Available public databases

In [15], a segmentation method is presented but mainly applied on Weizmann
[13] and Hollywood [20] datasets where actions are associated with whole (or
segmented) videos. This is also the case in [38] which introduces a typical dataset
for classification and presents a method for segmentation. The honeybee dataset
[28] considered in [15] is not relevant for human action recognition but is relevant
for general segmentation: [28] presents an algorithm for segmentation based on
Linear Dynamic System (LDS ) [32] (a graphical model with continuous state).

This is the opposite situation in [48] where unsegmented videos are provided
but the presented algorithm, based on HMM, performs classification but not
segmentation.

Considering [7], it appears that there are only few datasets providing un-
segmented videos i.e. with different actions in different parts of the video and

where the ground truth provides the temporal localization of actions (e.g. one
action by frame). This is even worse, if we consider in these datasets only those
containing skeleton data and/or focusing on daily actions.

As a result, to evaluate our algorithm, we mainly rely in this paper on
UTKAD for TUM [39] and University of Texas Kinect-Action Dataset [48]
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example of action: Lowering an object Provided skeleton

Figure 1: TUM dataset [39].

which are relatively similar datasets: TUM is a multi-sensor dataset that con-
tains especially skeleton streams (fig. 1). Actions are performed by 5 subjects
setting the table (e.g. Lowering an object, Opening a drawer). UTKAD is a set
of videos acquired with a Kinect that provides skeleton streams. The actions
are performed by 10 subjects in a human-machine interaction setting (e.g. clap
hands, wave hands). Both datasets are composed of around 20 sequences, about
2 minutes each, containing around 10 kinds of actions.

These datasets contain middle length videos. However, our objective is to
offer a pipeline that can be used on stream context for daily action segmentation
(e.g. 24 hours of video surveillance).

2.2. Stream constraints

In stream context, segmentation algorithms can not store nor process the
entire video to take a decision concerning the human action performed at a
specific time. Hence, all algorithms with an unbounded latency like [26] or [28]
(LDS ) can not be applied. Also, for the same stream constraints, algorithms
with a low computational complexity are required. This discards approach like
[15] where a SVM classifier [10] is applied to a number of windows which is
quadratic in the maximal size of an action, which may be too large for daily
actions. Finally, LDS -like algorithms can be degraded: decisions can be taken
with bounded latency. However, these degraded versions have also degraded
complexity.

For these two reasons, we focus on Hough Transform (HT ) which allows
both bounded latency and linear complexity (see table 1).

3. Hough transform based segmentation

3.1. Voting process

The main idea of the probabilistic HT for non parametric object (e.g. human
activities) introduced in [21] is to perform the detection as a local recognition
problem in the voting space built by agglomerating feature votes. The bounded
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Method Bounded latency small complexity
LDS e.g. [28] × �

degraded LDS � ×
OP e.g. [15] � ×
HT e.g. [49] � �

Table 1: Computational ability for algorithms like Linear Dynamic System based smoothing,
Optimal Padding and Hough Transform.

latency and linear complexity of HT are induced by this property of local de-
tection.

In the context of temporal detection applied to human action in streams,
the HT is composed of three steps:

1: Feature extraction and quantization form codewords

2: Each codeword votes for the possible temporal centers of the possible
actions according to specific learned weights

3: All the votes are agglomerated to form the Hough score from which de-
tection decisions are taken

In this article, we offer a new formalism for HT based methods. It consists
to model the steps 2 and 3 by introducing a function θ () linking codewords,
time displacements, and human actions, to vote weights. Let c be a codeword
extracted at time t. It votes with a weight θ (a, δt, c) for the hypothesis that the
current action is an action of type a and is centered at time t + δt (this weight
does not depend on the time t but only on a, δt and c). Then, given the set of
localized codewords extracted from the video V = {c, t} (c for codewords and t
for the corresponding extraction time), the Hough score HV that an action a is
centered at the time t′ is:

HV (t′, a) =
∑

(c,t)∈V

θ (a, t′ − t, c) (1)

Salient peaks of HV form the detections in video V (for simplicity, both the
video and the set of localized codewords are designed by V).

3.2. State-of-the-art on training processes

All HT based methods can be described using the proposed formalism: they
differ only in their estimation of the weights θ (a, δt, c). Some of these methods
consider only statistics on the training database [21], while the other ones intro-
duce an optimization step [25, 46, 50]. In this section, we introduce the main
methods of the state of the art and describe them with the proposed formalism.
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Implicit Shape Model:

In the Implicit Shape Model (ISM ) [21], the HT is based on generative
weights. Let P (a, δt|c) be the probability that the action occurring at time t is
a and is centered at time t + δt, knowing that a codeword c has been extracted
at time t. This probability is estimated with statistics of the training dataset
and is supposed to be independent of t (it depends only on a, δt and c). Then,
the weights are given by:

θISM (a, δt, c) = P (a, δt|c)

The probability P (a, δt|c) is estimated by:

P (a, δt|c) ≈
N (a, δt, c)

N (c)

where N (a, δt, c) is the number of times a codeword c has been extracted at
time t in an action a centered in t + δt and N (c) is the number of occurrences
of the codeword c.

This generative ISM approach has the advantage to be meta parameter-free
and relatively robust to over-training. However, [25, 46, 50] report that this
method produces false positives which can be partially reduced by introducing
discriminative parameters.

Max-Margin Hough Transform:

In Max-Margin Hough Transform (MMHT ) [25], a coefficient is introduced
for each codeword to weight the ISM values, resulting in:

θMMHT (a, δt, c) = wc × θISM (a, δt, c) = wc × P (a, δt|c)

The weights wc give more or less importance to the different codewords c ac-
cording to their discriminative power. They are learnt simultaneously in a
discriminative way through an optimization process similar to a SVM.

Implicit Shape Kernel:

In Implicit Shape Kernel (ISK ) [50], the votes are also based on the ISM
generative ones, but some coefficients are introduced to weight the different
training examples. Hence, ISK training leads to:

θISK (a, δt, c) =
∑

i

wi × Pi (a, δt|c)

where Pi (a, δt|c) is an estimation of the probability P (a, δt|c) based only on the
training example i. The weights wi are learnt simultaneously in a discriminative
way using a specific kernel-SVM training [50].

MMHT and ISK report experimental improvements over ISM by adding
discriminative parameters. This trend is also supported by [46].
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ISM + SVM:

In [46], it is shown that learning directly the ISM Hough map H (t′, a) with
a linear SVM is equivalent to the ISM combined with a weighting coefficient
for each displacement. This results in:

θISM+SV M (a, δt, c) = wδt
× P (a, δt|c) = wδt

× θISM (a, δt, c)

Hough forest:

To our knowledge, ISM [21] and the presented extensions [25, 46, 50] are
the only published methods to estimate the weights of Hough transform. More
precisely, these methods define links between codewords and votes. There are,
of course, various ways to select the features and the codewords, like the Hough
forest (HF ) [49] which are major methods of the state of the art. Hough for-
est uses ISM votes, but the mapping between features (usually data patches)
and codewords (a leaf in a weak binary classifier tree) is constructed such that
all training features associated with the same codeword are expected to come
from training examples with a same label (e.g. same action). Several works
(e.g. [49]) report that this automatic feature mapping process associated with
ISM votes leads to significant experimental improvements against codewords
obtained without learning, e.g. by K means algorithm.

However, in this section, we focus on the optimization of the weights defining
the voting process i.e. on the link between codewords and votes which is generic
in terms of features and codewords. Thus, the proposed method can be employed
with codewords provided by Hough forest approach.

One common point of [25, 46, 50] is that the addition of discriminative pa-
rameters to influence ISM votes increases performances of HT. Hence, a natural
idea is to learn directly all votes. But before, let us introduce some standard
HT post-processing.

3.3. From detection to segmentation

Post-processing for segmentation:

In temporal action detection context, the goal is to find the temporal
bounding box of each action, or often simply the center of each action. In
segmentation context: the goal is to determine which action is performed by
the actor among a set of actions in each frame.

Most of the articles of the HT literature (and particularly those presented
before) focus on detection, hence, each codeword naturally votes for centers

(temporal center of each action). Thus, these methods need to be adapted to
perform segmentation.

Smoothing based segmentation:

To our knowledge, in literature, this adaptation is done by propagating the
votes from centers to all frames thank to a smoothing function. For example,
in [49], this is done by applying a strong Gaussian smoothing on H:

H (t′′, a) ←
∑

t′

H (t′, a) exp

(
−

1

2σ2
(t′ − t′′)

2
)
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Such smoothing can be applied even in a detection context to group close peaks.
However, in segmentation context this smoothing should be more intense as each
frame must receive a piece of the votes from centers.

Then, the decision about the action at time t′ is given by:

â (t′) = arg max
a

(H (t′, a)) (2)

As smoothing may have a significant impact on performances in segmen-
tation context, it is interesting to learn an adapted smoothing e.g. to learn
a specific variance for each action [49], or more generally, to learn completely
some specific smoothing functions (especially not necessarily Gaussian).

Beyond smoothing:

However, this smoothing approach has a major drawback: as smoothing
is performed separately from voting, it does not simultaneously learn how a
codeword should vote and how the smoothing should be done.

Yet, this drawback can be solved by learning already smoothed votes. In
this way, votes have just to be accumulated to perform segmentation following
equation (2) (without any smoothing or other post-processes). Hence, the entire
process, described by equation (1) and (2), is learnt in one step.

Let us point out that smoothed votes are natural for segmentation as they
can be seen as votes for presence. In the detection context, each codeword votes
for a position corresponding to the center of the action, while in the segmentation
context, each codeword votes ideally for the interval where the action takes place
(as illustrated in figure 2). This interval can be seen as a smoothed vote. Also,
if the votes P (a is centered at t′|c extracted at t) are smoothed by the function
P (t′′ is part of a|a is centered at t′) then the result is the same as if votes are
P (t′′ is part of a|c extracted at t).

In addition, it is better to smooth individually the votes of each codeword
and to accumulate the votes than to do the opposite (as mainly done in litera-
ture): accumulate and smooth is the particular case of smooth and accumulate
when each codeword is smoothed in the same way. In contrary, smooth and
accumulate allows to learn a specific smoothing shape for each couple codeword-
action.

Hence, from now, codewords will not vote for the center of an action but
for the presence of an action. Thus, a codeword c extracted at time t votes
with a weight θ (a, δt, c) for the hypothesis that an action a is present at time
t + δt. This does not change the form of the equation (1) but the semantic of θ
and of H (which now represents the score that an action a is present at time
t′). Then, equation (2) provides segmentation.

Decreasing constraints:

This semantic change leads to several consequences e.g. on perfectly struc-
tured data, all the codewords of an action vote equally for each time in the
interval of the action and not only for the center (figure 2). These two ways
are equivalent on perfect data as there is a clear correspondence between peaks
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Figure 2: Voting for a center versus for a presence.

intensity and action duration, but the presence representation is more general
(because going from interval to center is easy but not the opposite) and thus is
more adapted to deal with real data.

Also, a smoothing function is naturally decreasing toward the distance to
0. In our context, the more t′ is far from t the less a codeword extracted in t
should provide information about t′. Later on in this paper, these constraints
are called decreasing constraints and can be written mathematically as:

∀a, c, δt1, δt2 :

{
δt1 ≤ δt2 ≤ 0 ⇒ θ (a, δt1, c) ≤ θ (a, δt2, c)
0 ≤ δt1 ≤ δt2 ⇒ θ (a, δt1, c) ≥ θ (a, δt2, c)

(3)

The advantage to vote for presence and not centers is the ability to learn an
optimal already smoothed voting function θ () as presented in next section.

4. Deeply optimized Hough Transform

We offer a new training process for Hough transform where all votes namely
all θ () values are directly optimized without using any generative values coming
from ISM. Hence, the set of variables to optimize is indexed simultaneously by
codewords, displacements and action and not only for one of them like in MMHT
or ISM + SVM (see table 4). For this reason, this training process is called
Deeply Optimized Hough Transform (DOHT ).
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methods θ variables
ISM [21] θISM (a, δt, c) = P (a, δt|w) -

MMHT [25] θMMHT (a, δt, c) = wc × P (a, δt|c) wa

ISK [50] θISK (a, δt, c) =
∑
i

(wi × Pi (a, δt|c)) wi

ISM+SVM [46] θISM+SV M (a, δt, c) = wδt
× P (a, δt|c) wδt

DOHT (our) θDOHT (a, δt, c) = wa,δt,c wa,δt,c

P (a, δt|c) is the probability that an action a occurring in t is centered at time t + δt

knowing that a codeword c has been extracted at time t. Pi (a, δt|c) is the same
probability estimated using only the training example i.

Table 2: The different learning methods of the Hough transform.

This process is straightforwardly defined by the goal of selecting the optimal
values for θ (a, δt, c) that provide correct decisions using equations (1) (2) at
testing time. For all training examples V and all times t′, the predicted action
â should be the real one a∗ (known on the training data) i.e.

∀V, t′ : âV (t′) = a∗
V (t′)

Considering the definition (eq. (2)) of the predicted action â, we obtain:

∀V, t′, a �= a∗
V (t′) : HV (t′, a) < HV (t′, a∗

V (t′))

However, dealing with strict inequality is not computationally feasible, thus we
impose a margin of 1:

∀V, t′, a �= a∗
V (t′) : HV (t′, a) + 1 ≤ HV (t′, a∗

V (t′))

and by replacing H by the definition (eq. (1)), we obtain:

∀V, t′, a �= a∗
V (t′) :

∑

(c,t)∈V

θ (a, t′ − t, c) + 1 ≤
∑

(c,t)∈V

θ (a∗
V (t′) , t′ − t, c)

Hence, the optimal function θ is simply the solution of this set of data constraints
to which the decreasing constraints (eq. (3)) are added.

However, to manage noisy training data, a soft margin framework is applied
as in [8]: some variables ξ are introduced to allow some data constraints to
be unsatisfied but these variables are minimized in order to reduce the number
of unsatisfied constraints though a loss function Ldata. Moreover, to prevent
over-fitting, a regularity term Lreg is added to the objective function as in [4].
A coefficient C mitigates the trade off between the attachment to data and the
regularity as in [8, 4]. Thus, our training process consists to solve:

min
θ≥0,ξ≥0

(Lreg (θ) + C × Ldata (ξ))

under constraints :⎧
⎪⎪⎨

⎪⎪⎩

∀V, t′, a �= a∗
V (t′) :

∑
(c,t)∈V

(
θ (a∗

V (t′) , t′ − t, c)
−θ (a, t′ − t, c)

)
+ ξ (t′) ≥ 1

∀a, c, δt1, δt2 :

{
δt1 ≤ δt2 ≤ 0 ⇒ θ (a, δt1, c) ≤ θ (a, δt2, c)
0 ≤ δt1 ≤ δt2 ⇒ θ (a, δt1, c) ≥ θ (a, δt2, c)

(4)
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Figure 3: Overview of the Hough method.

Green indicated meta parameters namely what features are extracted and K and C for the

training step. There is no meta parameter during testing time

There are to our knowledge no specific algorithm to deal with this formulation.
The optimization framework eq. (4) seems very similar to SVM, but nearly all
decreasing constraints may be saturated (whereas only a few data constraints,
the support vectors, are usually expected to be saturated in SVM ). This makes
optimization challenging. Hence, we offer to use the L1-norm for both Lreg and
Ldata as the problem becomes a linear program which is a well-studied problem
in literature (eg. [17]) and which can be efficiency solved (for example using the
solver CPLEX1 available freely for academic purposes).

4.1. Overview

The figure 3 gives a complete overview of the pipeline.
This pipeline is the same for all methods from table 4: the only difference

1www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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is the cells learning formulation. If the learning formulation is the DOHT for-
mulation (eq. (4)), then the pipeline is the DOHT pipeline. If the learning
formulation consists to use the elementary probability as vote map, this is just
ISM pipeline. In addition, prediction â at frame t′ during testing time in video

V is simply, as indicated, equal to arg max
a

(
∑
(c,t)

θ (a, t′ − t, c)

)
. There is thus

no difficulty to naively implement such pipeline.
For an efficient implementation, the voting process has to be done incremen-

tally as the words are extracted. This can be done by the following pseudo-code:
//let T be the number of frame in the sequence

//let A be the number of action

//let M be the maximal size of a training action

//let c[t=1..T] be the word extracted at frame t

//let theta[a=1..A,dt=-M..M,c=1..max words] be the voting weights

//then pred[t’=1..T] is the predicted action at frame t’

pred=prediction(T,A,M,theta,c)

initialize pred[t’=1..T]

initialize H[t’=1..T,a=1..A] to 0

for t from 1 to T do

for t’ from t-M to t+M do

for a from 1 to A do

H[t’,a]+=theta[a,t’-t,c[t]]

pred[t-M] = arg max over a of H[t-M,a]

return pred

As illustrated by this pseudo code, the testing time complexity of the Hough
pipeline is O (T × A × M) and decision in time t′ is taken with bounded latency
M . For OP -like algorithm testing time complexity is O

(
T × A × M2

)
and for

degraded-LDS it is O
(
T × A2 × M

)
(it is O

(
T × A2

)
for standard LDS but

with unbounded latency). So as discussed in table 1, the advantage of the
Hough pipeline is the straightforward ability to deal with streams involving
long action and large set of actions.

However, the selection of θ function is crucial: in the next sub-section, we
evaluate the different Hough methods i.e. the different ways to select θ (ISM,
HHMT, ISM+SVM, DOHT ) on public datasets. As ISK is only intended for
detection and not for segmentation, it is not compared to the others methods.

4.2. Evaluation on honeybee dataset

honeybee:

Experiments for evaluating DOHT have been conducted on the honeybee
dataset [28]. The latter dataset provides tracking output of honey bees having
3 kinds of behaviours correlated with their trajectory (figure 4). It is composed
of 6 large sequences. This dataset is well designed for action segmentation as
each frame is associated with an action. To provide results comparable to [28],
algorithms perform a leave-one-out cross validation setting (LOOCV ): algo-
rithms learn models using all videos from the dataset except one which is used
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(a) theoretic behaviour (b) tracking output
Green correspond to waggle, magenta to right turn and blue to left turn.

Figure 4: honeybee dataset [28].

for actions segmentation (one decision at each frame). Performance for this set-
ting is measured by the ratio of correctly decided actions in the testing video.
Then, the final performance is measured by the mean of these ratios for all set-
ting i.e. when each sequence is tested alternately. As explained in section 3.3,
to provide segmentation results with ISM, HHMT, ISM+SVM, a probabilistic
based smoothing is applied to the Hough score H. DOHT provides directly
segmentation results through equations (1) and (2).

Features and codewords:

The raw input signals in this dataset are the sequences of bee 2D positions
and orientations (xt, yt, φt). As the goal of this set of experiments is to evalu-
ate the voting process optimization, we do not focus on features, and thus, we
just consider similar features from [15] which achieves the best published perfor-
mances on this dataset. We use normalized short temporal series of 2D positions
as features. Let us call R (μ) the matrix of the 2D rotation of angle μ and p (t) =
(xt, yt), we consider the vector (R (−φt) (pt−τ − pt) , ..., R (−φt) (pt+τ − pt)) as
the feature extracted at time t. Multiple τ are considered simultaneously. Same
features are considered for all HT. All these features are clustered (indepen-
dently for each τ) using standard K means algorithm. The cluster centres
define the codebook and features are mapped to their nearest codeword. In
order to provide deterministic results (random free), K means is initialised with
deterministic seeds: the two first seeds are a diameter of the point clouds, then
next seed is the point with highest distance to the current set of seeds until K
seeds have been extracted.

Results:

The meta parameters of the algorithms before the voting process are the
sizes τ of the extracted short series, the K of the K means algorithms. As we
focus on the voting process, we simply make those meta parameters varying
on a coarse empirical grid. The only meta parameter of the voting process is
C (eq. 4) which is tuned on the 2−5, ..., 210 grid from [5] (independently for
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Method Accuracy mean on honeybee
ISM from [21] 71.9

MMHT from [25] 78.8
ISM + SVM from [46] 77.5

DOHT (our) 86.5

Approximated DOHT (our) 85.1
Inconsistent DOHT (our) 79.4

HDP-HMM [45] 83.3
SLDS [28] 85.9

PS-SLDS [28] 87.7

naive OP [15] 84.5
OP [15] 89.3

Table 3: Results on honeybee [28] for a common typical setting.

ISM, MMHT, ISM+SVM are reimplemented. Other results are just extracted from the

corresponding papers.

each algorithm). We want to stress that all these meta parameters only concern
input data or training step: there is no testing meta parameter in the voting
process.

The main result on this dataset is that the maximal performances achieved
by ISM, MMHT and ISM+SVM over all meta parameters are lower than the
means performances of DOHT. Results for a typical run corresponding to τ ∈
{1, 3, 6}, K = 10, and C = 1 are presented in table 3.

For these meta parameters, DOHT achieves 86.5% mean accuracy and signif-
icantly outperforms ISM, MMHT and ISM+SVM (table 3). In addition, DOHT
results are just a little behind state-of-the-art results published in [28, 15]: 86.5%
against 89.3% and 87.7%. However, these last results are obtained with algo-
rithms which would lead to overweening computation testing times on larger
datasets as discussed in section 2.2 and table 1. This non-linear-testing-time
would be especially problematic for PS-SLDS which is close to CRF with latent
variables that cluster frames into intervals, leading to a testing time complexity
containing both quadratic factor from CRF and OP.

Discussion:

These results on honeybee dataset support the efficiency of the proposed
DOHT toward state-of-the-art algorithms with important testing computation
times and other HT methods (notice that the testing time of DOHT is the same
as the ISM one).

Unfortunately, there is a practical limitation for using DOHT : the training
formulation (eq. (4)) can hardly be performed on large datasets due to the
required training time. Of course, training is an offline process that can be done
one for all, but, even with a 64 processors 2024 Go RAM server, training is not
trivial on large datasets. Thus, we offer a practical way to make the learning
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step tractable.

4.3. Training speed-up

Identified issues:

Three ways have been identified to reduce the training time: reducing the
number of constraints, handling specifically the positivity constraints (θ ≥ 0)
and handling specifically the decreasing constraints (eq. (3)).

The number of constraints is reduced by sampling the frame t′ considered
to define the constraints.

The positivity constraints are approximated by transforming them into vir-
tual data constraints: for all c, δt, we add to the real data constraints, a data
constraint corresponding to a virtual action afalse present at t + δt in a stream
containing only Υ ≫ 1 negative codewords c at time t. These virtual data
constraints are processed as real ones leading to:

∀a, c, δt : (−Υ × θ (afalse, c, δt)) − (−Υ × θ (a, c, δt)) ≥ 1 − ξ′ (5)

These virtual data constraints are satisfied at lower cost if θ (afalse, c, δt) ≈ 0
and for all a, c, δt, θ (a, c, δt) ≥ 1

Υ ≈ 0, and thus distort optimization toward
positive θ () (for real actions).

To our knowledge, there is no standard way to deal with the decreasing
constraints. A very simple solution could be to discard these constraints, as in
this way, the problem is similar to a multiclass SVM. However, this approach,
called the Inconsistent DOHT, leads to poor results as shown in table 3. Indeed,
as the temporal consistency of votes is completely lost, this lead to a harmful
noise over fitting. So, we introduce a trick to make implicit these constraints in
a SVM formulation by expressing θ using characteristic functions.

Handling decreasing constraints:

Let us introduce the characteristic function: if I is a time interval then

∀t : χI (t) =

{
1 t ∈ I

0 t /∈ I

Let M be the maximal length of action in the training data and let J full

denote the set of all time intervals containing 0 included in [−M, M ]. Then, the
satisfaction of equation (3) by θ () is equivalent to the existence of a function
w () ≥ 0 satisfying:

θ (a, δt, c) =
∑

I∈J full

w (a, I, c) × χI (δt)

especially because equation (3) is satisfy by each χI if 0 ∈ I. Hence, the
decreasing constraints can be omitted during the optimization step by looking
for w () instead of θ (). However, as there are M2 intervals in J full (leading to
a computational dead-end), DOHT is approximated (an called Approximated
DOHT ) using a subset J ⊂ J full of time intervals.
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Final training formulation:

Considering our experiments, we recommend this Approximated DOHT with
1-norm for Ldata and with squared 2-norm for Lreg. Thus, our final training
problem is a standard multi-class SVM [6, 16]:

min
w,ξ

(
‖w‖

2
2 + C × ‖ξ‖1

)

under constraints: ∀V, t′, a �= a∗
V (t′) :∑

(c,t)∈V,I∈J

((w (a∗
V (t′) , I, c) − w (a, I, c))χI (t′ − t)) + ξ (t′) ≥ 1

(6)

where V can represent a real data or come from eq. (5). To highlight that
this problem is an SVM, let us map the couples (I, c) into integers through a
function φ, then let us introduce the vector Q such that Qφ(I,c) is the number
of codewords c extracted from the video during the interval I translated by t′,
and let the vectors Wa be such that Wa,φ(I,c) = w (a, I, c). Then

∑

(c,t)∈V,I∈J

((w (a∗
V (t′) , I, c) − w (a, I, c))χI (t′ − t)) =

〈
Wa∗

V
(t′) − Wa, Q

〉

where 〈, 〉 is the standard scalar product. Alternatively, the 1-norm for Lreg et
Ldata leads to a lp-SVM [2].

We observe experimentally on honeybee dataset that a small fixed-size subset
J is sufficient for Approximated DOHT to perform as well as the DOHT : using
J =

{[
−2−αM, 2−βM

]
, 0 ≤ α, β ≤ 6

}
and the SVM solver from [16], Approxi-

mated DOHT speeds up the training time by a factor 50 and achieves equivalent
performances than DOHT (85, 1% against 86, 5% see tab. 3) on honeybee.

This Approximated DOHT combined with a weak sub-sampling of con-
straints (called DOHT for simplicity later on in this paper) can be trained
on large dataset particularly on motion capture stream to segment human ac-
tivities.

5. Human Action Segmentation in Video Streams

5.1. Normalization of the skeleton signal

In this paper, we consider videos whose skeleton can be extracted to focus
on skeleton based features. The raw signal from the video is thus a set of posi-
tions for each articulation along the time, in a coordinate system linked to the
camera. In order to make the posture independent of the camera configuration,
the signals have to be normalized. The main normalization processes of the
literature are based on distances, angles or on subjective view.

Angle based normalization. The angles between two vectors are invariant to
global rotations and translations. A representative angle normalization has been
introduced in [31]. First, the principal component analysis (PCA) is applied on
the 3D positions of neck, spine, tail and left/right shoulders and hips providing
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two vectors u and r. Then, the vector connecting shoulders to elbows, hips to
knees and neck to head are decomposed in the spherical system u,r i.e. the
vector is describe by the two angles with u (inclination) and r (azimuth). Then,
the vector connecting respectively elbows to hands, knees to feet are decomposed
in a local spherical system u′,r′ where u′ is the vector connecting respectively
shoulders to elbows and hips to knees and r′ is the projection of r into the
orthogonal plane of u′. Finally all angles are unfolded into a 16D vector that
describes the 48D skeleton (16 articulations, each corresponding to a 3D point).

Subjective view based normalization. Given in a standard coordinate system
linked to a skeleton, the positions of articulations become invariant to global
rotations and translations of the skeleton. For example, the positions of all
articulations can be expressed in the coordinate system linked to the torso in-
troduced in [31].

In [48],the coordinate system linked to the torso is computed and the sphere
containing the person is decomposed into solid angle. Each solid angle corre-
sponds to a histogram bin and each articulation votes for its containing bin,
leading to a histogram that characterizes the skeleton.

Distances based normalization. The distances between two articulations are in-
variant to global rotations and translations. In [43], the distances for all pairs
of articulations are considered, introducing some redundancy: 128 distances are
computed for a 48D skeleton. Relevant distances are then selected by a learning
process. In [49], a Hough forest selects relevant distances throw a sampling into
distance based weak binary classifier and entropy based rejection.

Evaluation. In order to evaluate the influence of the normalization, we extract
some common features and use them either without normalization or with one
of the three different normalizations. The simplest features are considered in
this set of experiments: the feature extracted in a frame is simply the full
skeleton unfolded into a vector. Each skeleton vector is then transformed into
a vector of angles from [31] or a vector of distances from [43] or expressed
into the coordinate system from [31] (to evaluate respectively angle, distance or
subjective view normalization).

In all cases, after normalization, the skeleton extracted at a specific frame
is represented by a fixed size vector. These vectors are then quantified using K
means algorithm. Evaluations are performed on UTKAD and TUM datasets
with DOHT.

For TUM, [49] being the most relevant paper associated to TUM dataset in
our context, we follow the same experimental protocol. For this purpose, the
dataset is split into training and testing parts following a predefine scheme (see
[49]). Each algorithm provides a predicted action associated with the left hand
motion in each frame of the testing sequences. Performances are measured by
the total number of correct predictions over the total number of frames in testing
videos. If not mentioned, the input of our pipeline is the reduced skeleton with
13-joints.
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Normalization of skeleton Accuracy mean Accuracy
coupled with DOHT on UTKAD on TUM

raw skeleton 58.3 53.4
angle skeleton 72.0 61.7

distance skeleton 69.2 60.2
subjective skeleton 70.7 62.7

Table 4: Results of different normalizations on the skeleton features on HTKAD and TUM

datasets.

In UTKAD, there are sometimes multiple actions in a same frame. In such
frame, we remove all actions except the dominant. Then, performances are
measured through a LOOCV as for honeybee.

Results and discussion. The training meta parameters of this experiment are the
K and C (as for honeybee). Maximal performances of these different algorithms
are presented in table 4.

All these normalizations achieve roughly equivalent performances but out-
perform not normalized skeleton. Also, when DOHT is applied on both 3 nor-
malized skeletons, it does not achieve better results than on each normalized
skeletons separately, highlighting that these normalizations are not complemen-
tary.

On the other side, angle based normalization is less generic than the others
since the transformation applied is different for each articulation (normalization
is performed incrementally from center articulations to body extremities). Also,
distance normalization is not invariant to the global body size of the different
subjects contrary to subjective view and angle normalization. So, we decide
to apply this subjective view normalization on the feature extracted from the
stream. We focus on them in the next sub-section.

5.2. Selected features

In literature, both single frame skeleton features [48] and multiple frames
skeleton features [43] are proposed as well as both single articulation [43] or
combined [31, 48, 49] approaches. The feature type has a significant impact on
e.g. the discriminative power and robustness to occlusions. Typically, a grouped
feature may be more discriminative than the corresponding part features but
may not be extracted as soon as one part is occluded. In addition, articulation
combination leads to a higher feature space and may lead to adverse effects e.g.
for dictionary construction using K means algorithm. Finally, when relying on
training step, the learning algorithm may be more efficient by selecting relevant
combination from individual features.

In order to compete single articulation versus skeleton features, we evaluate
DOHT fed by one or the other.
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input features Accuracy mean Accuracy
for DOHT on UTKAD on TUM
skeleton 70.7 62.7

articulations 74.8 77.6

Table 5: Results of skeleton versus articulation features on UTKAD and TUM datasets.

Single articulation versus skeleton features:

The skeleton feature is a vector s where s3×i+j is the coordinate j (in 3D)
of the articulation i (one vector for each skeleton). These skeleton features are
quantified using K means algorithm.

The single articulation feature corresponds to the 3D position of one articu-
lation i i.e. the vector (s3×i, s3×i+1, s3×i+2). These vectors are then quantified
independently for each articulation, using K means algorithm. A unique K
value is considered for all articulations.

The training meta parameters of this experiment are again K and C. The
maximal performances of these pipelines are presented in table 5.

These experiments support that articulation based features are better than
skeleton ones for learning based algorithms. This trend is yet not crucial on
UTKAD where actions are correlated with global body motion, but on TUM
where action is strongly correlated with the motion of the left hand, the artic-
ulation based features strongly outperform skeleton ones with DOHT.

These results support independent articulation features toward combined
ones and invite to compete independent frame features toward combined ones.

Single frame versus multiple frame features:

Multiple frame approaches have the ability to capture some temporal prop-
erty of the action unlike single frame ones, and, have provided an impor-
tant breakthrough [37, 42] in human action recognition. Particularly, in a
BOW+SVM framework [37, 42, 43], actions like stand up or sit down can hardly
be distinguished using single frame features as no element of the pipeline takes
into account temporal information. So such framework requires multiple frame
features like Fourier temporal pyramid [43] or interest point trajectories [37, 42].
But, single frame skeleton features are more robust to skeleton extraction fail-
ure, speed variation and to irregular sub-sampling of the frames of the video.
This invites to evaluate if multiple frame features are useful in HMM context
[48] or DOHT context where the temporal information is already captured by
the learning processes.

To evaluate the relevancy of multiple frame features in our context, we in-
troduce several multiple frame features:

Speeds. The first multiple frame features are simply the displacement vectors
between two successive positions of an articulation i.e. if qt is the 3D position
of a specific articulation in the normalized coordinate system then qt+1−qt−1 is

19



input features Accuracy
positions 77.6
speeds 77.1

tracklets 80.1

position + speeds 79.8
positions + tracklets 80.6
speeds + tracklets 80.8

positions + speeds + tracklets 81.5

Table 6: Results of different features with DOHT on TUM dataset.

the feature extracted for this articulation at frame t. As for position, K means
algorithm transforms these features into codeword.

Sub-trajectories. The second multiple frame features considered are short tem-
poral series of 3D positions of each articulation: let the vector (q1, ..., qT ) be
the normalized trajectory of one articulation, then, we consider the vector
(qt−τ , ..., qt+τ ) as a feature extracted at time t with size τ . These features
called tracklets are densely extracted i.e. extracted at each frame where avail-
able. The hidden target of these features is to capture the gestures performed
by the subject. Similar features are also considered in [37, 42] emphasizing the
efficiency of such interest point trajectories for human action recognition.

Several sizes τ may be simultaneously considered. In this case, tracklets
with different sizes may be clustered together to make codeword extraction
robust to local speed of the action. Such clustering can be performed with K
medoids algorithm based on dynamic time wrapping (DTW ). DTW [3] provides
a classical distance between different sizes series by matching several times in one
sequence to one time in the other and vice-versa. K medoids is a variant of K
means where only distances are needed and not means which require a common
space. Alternatively clustering can be done independently for each tracklet size
τ with K means algorithm. However, considering our experiment, it appears
that using different sizes unlikely provides complementary information, so for
simplicity we consider one size only.

Results. Experiments to compete single frame versus multiple frame features
are performed only on TUM dataset as an irregular sub sampling does not
allow using multiple frame features on UTKAD. The meta parameters of the
experiment are C, K and τ for tracklets (τ concerns only input data and C, K
only the training). Due to the size of parameters grid, we can not consider
different K for different features, so in an experiment e.g. positions + tracklets
a common K is considered for all clustering processes even if positions are 3-D
features and tracklets (3 × τ)-D ones. Maximal performances of pipelines are
presented in table 6.

These experiments support that multiple frame features performs better than
single frame ones in context of DOHT algorithm. However, these different
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τ = 4 τ = 6
K : 5 10 15

C = 0.25 70.5 69.5 67.9
C = 0.5 72.4 72.1 70.4
C = 1 74.4 74.2 73.8
C = 2 75.1 76.3 75.3
C = 4 74.8 76.5 76.3
C = 8 74.8 77.2 75.7

K : 5 10 15
C = 0.25 70.2 70.0 70.4
C = 0.5 72.2 73.2 73.7
C = 1 75.4 75.8 76.3
C = 2 77 78.0 77.4
C = 4 77.3 79.4 78.3
C = 8 76.4 78.9 77.6

τ = 8 τ = 10
K : 5 10 15

C = 0.25 70.2 71.7 70.5
C = 0.5 72.8 76.0 73.2
C = 1 74.9 77.9 76.0
C = 2 76.6 80.1 78.1
C = 4 77.1 79.2 78.6
C = 8 77.3 78.3 77.7

K : 5 10 15
C = 0.25 71.4 72.3 70.8
C = 0.5 73.7 76.1 74.3
C = 1 76.1 78.2 76.9
C = 2 77.6 79.3 78.2
C = 4 76.7 79.4 78.8
C = 8 76.3 79.0 78.9

Table 7: Results for tracklet features when varying the training meta parameters K, C, τ with
DOHT on TUM dataset.

features are complementary as DOHT fed with positions + speeds + tracklets
perform better than DOHT fed by one of the three.

Discussion:

Best selected features. To summarise these experiments, it appears that in our
context single articulation features are better than combined ones and multiple
frame features better than single frame ones. The best evaluated features alone
are tracklets: the concatenation on a small time window of the 3D positions
of one specific articulation densely extracted across videos. However, the best
evaluated pipeline is the combination of simple positions + speeds + tracklets.

Stability toward meta parameters. In these experiments, we focus on maximal
performance achieved when coarsely varying meta parameters e.g. K, C, τ . The
stability toward these meta parameters is yet important in a system perspective.
Hence, in table 7, we present the different raw results. We want to stress that
all these meta parameters only concern input data (τ) or training step (K, C)
but that there are no meta parameter specific to testing voting process.

The interested point is that none of the meta parameters is crucial: even if
empirical maximal performance is achieved only with one specific setting, there
are plenty of settings which lead to nearly maximal performances. For example,
there are 6 setting providing more than the maximal performance minus 1.

One other interesting point is that K is small. An explanation is that in our
training formulation (eq. (6)), the number of variables is K ×A× J where A is
the number of activities (typically 10) and J the number of intervals considered
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algorithm TUM TUM 27-joints UTKAD
speed features + HF [49] 80.3 80.3

all features + HF [49] 77.6 81.5

ISM 58.3 58.3 62.7
DOHT 81.5 83.0 74.8

Table 8: Comparison with published results on HTKAD and TUM datasets.

Results are just extracted from the corresponding papers and do not come from

reimplementation.

for the approximation (typically 64). Thus, increasing K leads to more variables
and may lead to over-fitting.

5.3. Comparison to the state-of-the-art

In table 8, our results on human actions are presented together with pub-
lished comparable ones and with the ISM baseline.

However, considering the few number of comparable results (works dealing
with segmentation on TUM and UTKAD datasets), we also offer to compare our
algorithm to published close results. For this purpose, we present performance
of our pipeline in classification context i.e. on already segmented data. As
our algorithm is not designed for such context, these experiments lead to under
estimate the performances of our algorithm. However, to our knowledge, the
only alternative could have been to reimplement algorithms e.g. [49, 15, 28]
and apply it on TUM and UTKAD datasets. But, these works need expert
knowledge to select properly hyper parameters, and thus, the reimplementation
may lead to under estimate performances of the state of the art. In addition, in
classification context, we evaluate another baseline obtained by erasing location
information from DOHT. This can be done by erasing the keyword locations
(e.g. replacing them by a constant). Thus, the performance differences between
this baseline and DOHT can be interpreted as the information provided by
taking into account temporal location of extracted keywords from the videos.
Alternatively, this can be done in practice by setting J = {[−M, M ]} where J
is the set of intervals from eq. (6). So this baseline corresponds to a BOW+SVM
without any normalization (e.g. no l1 normalization, no tfidf normalization).
Thus, we call this baseline unscaled SVM. Nearest neighbours algorithm is call
NN. Videos from both training and testing sets are segmented according to the
ground truth and then given as input to DOHT as it was unsegmented data.

These results are presented in table 9 (to our knowledge no other results
on these datasets have been published). Our algorithm achieves 82.4% means
accuracy on UTKAD toward 91.5% for the state-of-the-art. This is a promising
result considering that our algorithm is designed for another context.

At first sight, another comparison could have be done on CAD-60 [38],
especially because [38] is an algorithm which deals with segmentation. However
there are three problems. First, even if [38] presents a segmentation algorithm,
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algorithm TUM UTKAD
HMM [48] 90.9
NN [11] 91.5

SVM [9] 90.4
sparse SVM [41] 90.9

ISM 65.5 64.1
unscaled SVM 80.6 79.8

DOHT 88.5 82.4

Table 9: Results on already segmented data on several datasets.

Results are just extracted from the corresponding papers and do not come from

reimplementation.

CAD-60 data are already segmented. Then, results on this dataset are reaching
a saturation point: even ISM achieves 90.3% of precision and 86.0% of recall
in new person setting (see [38]). Finally but more problematic, algorithm from
[38] is designed to decide as neutral the frames which are not interesting for
any action but the ground truth (yet provided by [38]) does not take this into
account. So, algorithm from [38] only achieves only 69.0% precision and 57.3%
recall that is much lower than the baseline ISM.

Considering these comparisons, our pipeline improves state-of-the-art per-
formances in human action segmentation context and achieves promising results
on human action classification task. This supports the pertinence of our pipeline
for human action segmentation.

6. Conclusion

In this paper, we offer two contributions. First, we offer a new Hough trans-
form method based on discriminative parameters only. This Deeply Optimized
Hough Transform is designed for segmentation by performing a voting process
based on smoothed weights. It significantly outperforms generative based Hough
transform on public datasets.

The second contribution of this paper is the application of this method to hu-
man action segmentation. Combined with the selected skeleton based features,
this method slightly improves state-of-the-art performances on unsegmented
data and achieves honorable performances on segmented ones on public datasets
highlighting the relevancy of this new method for human action segmentation.

In future works, we will adapt and apply our method to deal with human
action spatiotemporal segmentation in classic videos. This aim introduces two
important challenges: performing segmentation in 3D (picture space + time)
and managing a large number of features.
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