An a Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Stokes Equations - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Pré-Publication, Document De Travail Année : 2012

An a Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Stokes Equations

Résumé

We derive an a posteriori error estimation for the discrete duality finite volume (DDFV) discretization of the stationary Stokes equations on very general twodimensional meshes, when a penalty term is added in the incompressibility equation to stabilize the variational formulation. Two different estimators are provided: one for the error on the velocity and one for the error on the pressure. They both include a contribution related to the error due to the stabilization of the scheme, and a contribution due to the discretization itself. The estimators are globally upper as well as locally lower bounds for the errors of the DDFV discretization. They are fully computable as soon as a lower bound for the inf-sup constant is available. Numerical experiments illustrate the theoretical results and we especially consider the influence of the penalty parameter on the error for a fixed mesh and also of the mesh size for a fixed value of the penalty parameter. A global error reducing strategy that mixes the decrease of the penalty parameter and adaptive mesh refinement is described.
Fichier principal
Vignette du fichier
aposteriori_stokes_ddfv_hal.pdf (372.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-00726531 , version 1 (30-08-2012)
cea-00726531 , version 2 (07-04-2015)

Identifiants

  • HAL Id : cea-00726531 , version 1

Citer

Anh Ha Le, Pascal Omnes. An a Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Stokes Equations. 2012. ⟨cea-00726531v1⟩
261 Consultations
436 Téléchargements

Partager

More