Article Dans Une Revue Nature Communications Année : 2021

Inertial and viscous flywheel sensing of nanoparticles

Résumé

Rotational dynamics often challenge physical intuition while enabling unique realizations, from the rotor of a gyroscope that maintains its orientation regardless of the outer gimbals, to a tennis racket that rotates around its handle when tossed face-up in the air. In the context of inertial sensing, which can measure mass with atomic precision, rotational dynamics are normally considered a complication hindering measurement interpretation. Here, we exploit the rotational dynamics of a microfluidic device to develop a modality in inertial sensing. Combining theory with experiments, we show that this modality measures the volume of a rigid particle while normally being insensitive to its density. Paradoxically, particle density only emerges when fluid viscosity becomes dominant over inertia. We explain this paradox via a viscosity-driven, hydrodynamic coupling between the fluid and the particle that activates the rotational inertia of the particle, converting it into a ‘viscous flywheel’. This modality now enables the simultaneous measurement of particle volume and mass in fluid, using a single, high-throughput measurement.
Fichier principal
Vignette du fichier
s41467-021-25266-3.pdf (1.78 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

cea-04918389 , version 1 (29-01-2025)

Licence

Identifiants

Citer

Georgios Katsikis, Jesse F Collis, Scott M Knudsen, Vincent Agache, John E Sader, et al.. Inertial and viscous flywheel sensing of nanoparticles. Nature Communications, 2021, 12 (1), pp.5099. ⟨10.1038/s41467-021-25266-3⟩. ⟨cea-04918389⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More