On the hidden negative transfer in sequential Transfer Learning for domain adaptation from news to tweets - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Communication Dans Un Congrès Année : 2021

On the hidden negative transfer in sequential Transfer Learning for domain adaptation from news to tweets

Résumé

Transfer Learning has been shown to be a powerful tool for Natural Language Processing (NLP) and has outperformed the standard supervised learning paradigm, as it takes benefit from the pre-learned knowledge. Nevertheless, when transfer is performed between less related domains, it brings a negative transfer, i.e. it hurts the transfer performance. In this research, we shed light on the hidden negative transfer occurring when transferring from the News domain to the Tweets domain, through quantitative and qualitative analysis. Our experiments on three NLP tasks: Part-Of-Speech tagging, Chunking and Named Entity recognition reveal interesting insights.
Fichier principal
Vignette du fichier
AdaptNLP-2021_Meftah.pdf (420.26 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence
Domaine public

Dates et versions

cea-04572482 , version 1 (10-05-2024)

Licence

Domaine public

Identifiants

  • HAL Id : cea-04572482 , version 1

Citer

Sara Meftah, Nasredine Semmar, Youssef Tamaazousti, Hassane Essafi, Fatiha Sadat. On the hidden negative transfer in sequential Transfer Learning for domain adaptation from news to tweets. The Second Workshop on Domain Adaptation for NLP, Association for Computational Linguistics, Apr 2021, Kiev, Ukraine. ⟨cea-04572482⟩
22 Consultations
21 Téléchargements

Partager

More