Article Dans Une Revue SN Partial Differential Equations and Applications Année : 2023

Well posedness for the Poisson problem on closed Lipschitz manifolds

Résumé

We study the weak formulation of the Poisson problem on closed Lipschitz manifolds. Lipschitz manifolds do not admit tangent spaces everywhere and the definition of the Laplace–Beltrami operator is more technical than on classical differentiable manifolds (see, e.g., Gesztesy in J Math Sci 172:279–346, 2011). They however arise naturally after the triangulation of a smooth surface for computer vision or simulation purposes. We derive Stokes’ and Green’s theorems as well as a Poincaré’s inequality on Lipschitz manifolds. The existence and uniqueness of weak solutions of the Poisson problem are given in this new framework for both the continuous and discrete problems. As an example of application, numerical results are given for the Poisson problem on the boundary of the unit cube.
Fichier principal
Vignette du fichier
preprintFEOnLipschitzManifolds.pdf (2.83 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-04431292 , version 1 (01-02-2024)

Identifiants

Citer

Michael Ndjinga, Marcial Nguemfouo. Well posedness for the Poisson problem on closed Lipschitz manifolds. SN Partial Differential Equations and Applications, 2023, 4, pp.44. ⟨10.1007/s42985-023-00263-x⟩. ⟨cea-04431292⟩
13 Consultations
5 Téléchargements

Altmetric

Partager

More