Reinforcement Learning for time-aware shaping (IEEE 802.1Qbv) in Time-Sensitive Networks - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Poster De Conférence Année : 2023

Reinforcement Learning for time-aware shaping (IEEE 802.1Qbv) in Time-Sensitive Networks

Résumé

Industry 4.0 involves the networking of production equipment. This can be achieved thanks to the Time-Sensitive Networking (TSN) set of network standards. However, this new paradigm brings new challenges because TSN features optimization relies on the dynamic characteristics of the underlying communication network (e.g., network topology, routing strategy, critical flows requirements, etc.). This paper focuses on the case of the IEEE 802.1Qbv standard by exploring the applicability of a Deep Reinforcement Learning (DRL) approach in order to reduce the configuration time of the TSN-specific parameters, compared to exact or heuristic methods.
Fichier principal
Vignette du fichier
etfa2023_wip_NoteIEEE.pdf (207.49 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

cea-04327889 , version 1 (06-12-2023)

Identifiants

Citer

Adrien Roberty, Siwar Ben Hadj Said, Frederic Ridouard, Henri Bauer, Annie Geniet. Reinforcement Learning for time-aware shaping (IEEE 802.1Qbv) in Time-Sensitive Networks. ETFA 2023 - IEEE 28th International Conference on Emerging Technologies and Factory Automation, Sep 2023, Sinaia, Romania. , pp.1-4, 2023, 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA). ⟨10.1109/ETFA54631.2023.10275566⟩. ⟨cea-04327889⟩
63 Consultations
150 Téléchargements

Altmetric

Partager

More