Image quantization towards data reduction: robustness analysis for SLAM methods on embedded platforms - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Communication Dans Un Congrès Année : 2022

Image quantization towards data reduction: robustness analysis for SLAM methods on embedded platforms

Résumé

Embedded simultaneous localization and mapping (SLAM) aims at providing real-time performances with restrictive hardware resources of advanced perception functions. Localization methods based on visible cameras include image processing functions that require frame memory management. This work reduces the dynamic range of input frame and evaluates the accuracy and robustness of real-time SLAM algorithms with quantified frames. We show that the input data can be reduced up to 62% and 75% while maintaining a similar trajectory error lower than 0.15m compared to full precision input images.

Domaines

Informatique
Fichier principal
Vignette du fichier
2022_DRT_1759_Image_quantization.pdf (832.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-03858795 , version 1 (17-11-2022)

Identifiants

Citer

Quentin Picard, Stephane Chevobbe, Mehdi Darouich, Jean-Yves Didier. Image quantization towards data reduction: robustness analysis for SLAM methods on embedded platforms. ICIP 2022 - The 29th IEEE International Conference on Image Processing, Oct 2022, Bordeaux, France. pp.4158-4162, ⟨10.1109/ICIP46576.2022.9897315⟩. ⟨cea-03858795⟩
128 Consultations
76 Téléchargements

Altmetric

Partager

More