Development of NMC622 / graphite hybrid polymer lithium battery - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Conference Papers Year : 2022

Development of NMC622 / graphite hybrid polymer lithium battery


Li-ion batteries are considered as the most suitable electrochemical energy storage systems for a wide range of applications including stationary applications, when combined with renewable energy harvested systems, and automotive applications with the electrification of transportation, in order to contribute to the reduction of CO2 emissions responsible for climate change1. Indeed, Li-ion batteries combine high specific energy and power, long cyclelife, high efficiency, high charge/discharge rate capability and low self-discharge. In addition, it is a versatile technology easily adaptable to the application by playing with the electrode materials and electrolyte composition.2-3 However, most commercial Li-ion batteries widely use organic carbonates electrolyte containing Li salt which is volatile, flammable and can induce thermal runaway in case of inner short-circuit.4 In order to make the battery safer, CEA-Liten and Solvay have developed a new technology based on hybrid polymer lithium battery, where the organic carbonates electrolyte is confined in a hybrid polymer membrane as well as in gelled electrodes from their manufacturing. Hybrid polymer membrane is prepared by using a non-aqueous solgel route. A new Solvay proprietary functionalized PVdF is able to react and create a stable network able to trap fully the organic carbonate electrolyte. The membrane elaborated by a two-step cross-linking method and implemented by using roll-to-roll coating machine, shows homogeneous structure coupled with high ionic conductivity and high flexibility when LiPF6 (1M) in a carbonate mix is used. The gelled electrodes are prepared by using a second Solvay proprietary functionalized PVdF as binder, which is able to trap the organic carbonate electrolyte in the electrode microstructure. Gelled electrodes are produced according to conventional electrode manufacturing process (i.e using mixing, coating and calendering machines). Thus, gelled graphite based anode and gelled NMC622 based cathode are produced at the pilot line scale in anhydrous atmosphere, using LiPF6 (1M) in a carbonate mix. In addition, the technology allows producing high loading electrodes (5mAh/cm² typically for the gelled cathode) with suitable mechanical properties adapted for winding. No damage was observed regarding the integrity of the gelled electrodes at each manufacturing step. Proof of concept of the technology was carried out by assembling the gelled electrodes with the hybrid polymer membrane (without any addition of additional electrolyte) in various cell sizes and formats: from single layer pouch to 1 Ah stacked cell, prismatic cell or even 18650 cylindrical cell, leading to relevant electrochemical performances. In addition, the retention of the organic carbonate electrolyte has shown unequivocally a benefit effect on the safety, highlighted by calorimetry analysis and some abusive tests. New process is today under investigations in order to manufacture the hybrid polymer membrane as well as the gelled electrodes without the any process solvent, than those used in the organic carbonate electrolyte. This way allows simplifying considerably the cell manufacturing process, increasing the safety and reducing the cost and the environmental footprint because no solvent is evaporated and recovered, as it is the case with conventional Li-ion batteries.
Fichier principal
Vignette du fichier
MRS Spring 2022_Abstract_JSalomon_Development of NMC622 _graphite hybrid polymer Li battery_VF (1).pdf (69.58 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

cea-03784764 , version 1 (26-09-2022)


  • HAL Id : cea-03784764 , version 1


Jérémie Salomon, Hélène Rouault, Benjamin Amestoy, Léo Merchat, Gaelle Besnard, et al.. Development of NMC622 / graphite hybrid polymer lithium battery. 2022 MRS spring meeting, May 2022, Honolulu, United States. ⟨cea-03784764⟩
60 View
10 Download


Gmail Facebook X LinkedIn More