Coating gold nanorods with silica prevents the generation of reactive oxygen species under laser light irradiation for safe biomedical applications
Abstract
Gold nanoparticles can produce reactive oxygen species (ROS) under the action of ultrashort pulsed light. While beneficial for photodynamic therapy, this phenomenon is prohibitive for other biomedical applications such as imaging, photo-thermal drug release, or targeted gene delivery. Here, ROS are produced in water by irradiating gold nanorods and silica-coated gold nanorods with near-infrared femtosecond laser pulses and are detected using two fluorescent probes. Our results demonstrate that a dense silica shell around gold nanorods inhibits the formation of singlet oxygen (1O2) and hydroxyl radical (OH•) efficiently. The silica coating prevents the Dexter energy transfer between the nanoparticles and 3O2, stopping thus the generation of 1O2. In addition, numerical simulations accounting for the use of ultrashort laser pulses show that the plasmonic field enhancement at the nanoparticle vicinity is lessened once adding the silica layer. With the multiphotonic ejection of electrons being also blocked, all the possible pathways for ROS production are hindered by adding the silica shell around gold nanorods, making them safer for a range of biomedical developments.
Domains
Material chemistry
Fichier principal
Mitiche et al_2022_preprint.pdf (1.73 Mo)
Télécharger le fichier
Mitiche_J Mater Chem B 2022_SI.pdf (1.93 Mo)
Télécharger le fichier
Origin | Files produced by the author(s) |
---|
Origin | Files produced by the author(s) |
---|