Hyperfine spectroscopy in a quantum-limited spectrometer - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Magnetic Resonance Year : 2020

Hyperfine spectroscopy in a quantum-limited spectrometer

Thierry Chanelière
Philippe Goldner

Abstract

We report measurements of electron-spin-echo envelope modulation (ESEEM) performed at millikelvin temperatures in a custom-built high-sensitivity spectrometer based on superconducting micro-resonators. The high quality factor and small mode volume (down to 0.2 pL) of the resonator allow us to probe a small number of spins, down to 5×102. We measure two-pulse ESEEM on two systems: erbium ions coupled to 183W nuclei in a natural-abundance CaWO4 crystal and bismuth donors coupled to residual 29Si nuclei in a silicon substrate that was isotopically enriched in the 28Si isotope. We also measure three- and five-pulse ESEEM for the bismuth donors in silicon. Quantitative agreement is obtained for both the hyperfine coupling strength of proximal nuclei and the nuclear-spin concentration.

Dates and versions

cea-03116462 , version 1 (20-01-2021)

Identifiers

Cite

Sebastian Probst, Gengli Zhang, Miloš Rančić, Vishal Ranjan, Marianne Le Dantec, et al.. Hyperfine spectroscopy in a quantum-limited spectrometer. Magnetic Resonance, 2020, 1 (2), pp.315-330. ⟨10.5194/mr-1-315-2020⟩. ⟨cea-03116462⟩
57 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More