Optical observation of spin-density-wave fluctuations in Ba122 iron-based superconductors - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Physical Review B: Condensed Matter and Materials Physics (1998-2015) Year : 2016

Optical observation of spin-density-wave fluctuations in Ba122 iron-based superconductors

Abstract

In iron-based superconductors, a spin-density-wave (SDW) magnetic order is suppressed with doping, and unconventional superconductivity appears in close proximity to the SDW instability. The optical response of the SDW order shows clear gap features: substantial suppression in the low-frequency optical conductivity, alongside a spectral weight transfer from low to high frequencies. Here, we study the detailed temperature dependence of the optical response in three different series of the Ba122 system [Ba$_{1−x}$K$_x$Fe$_2$As$_2$, Ba(Fe$_{1−x}$Co$_x$ )$_2$As$_2$, and BaFe$_2$(As$_{1−x}$P$_x$)$_2$]. Intriguingly, we find that the suppression of the low-frequency optical conductivity and spectral weight transfer appear at a temperature $T^∗$ much higher than the SDW transition temperature TSDW. Since this behavior has the same optical feature and energy scale as the SDW order, we attribute it to SDW fluctuations. Furthermore, $T^∗$ is suppressed with doping, closely following the doping dependence of the nematic fluctuations detected by other techniques. These results suggest that the magnetic and nematic orders have an intimate relationship, in favor of the magnetic-fluctuation-driven nematicity scenario in iron-based superconductors.
Fichier principal
Vignette du fichier
PhysRevB.94.085147.pdf (913.09 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

cea-02086631 , version 1 (01-04-2019)

Identifiers

Cite

B. Xu, Y. M Dai, H. Xiao, B. Shen, Z. R. Ye, et al.. Optical observation of spin-density-wave fluctuations in Ba122 iron-based superconductors. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2016, 94, pp.085147. ⟨10.1103/PhysRevB.94.085147⟩. ⟨cea-02086631⟩
50 View
101 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More