Resonant-Plasmon-Assisted Subwavelength Ablation by a Femtosecond Oscillator
Liping Shi
(1)
,
Bianca Iwan
(2)
,
Quentin Ripault
(3)
,
José R. c. Andrade
(1)
,
Seunghwoi Han
(4)
,
Hyunwoong Kim
(4)
,
Willem Boutu
(3, 5)
,
Dominik Franz
(3, 5)
,
Rana Nicolas
(3, 5)
,
Torsten Heidenblut
(6)
,
Carsten Reinhardt
(7)
,
Bert Bastiaens
(8)
,
Tamas Nagy
(1)
,
Ihar Babuskin
(9)
,
Uwe Morgner
(1)
,
Seung-Woo Kim
(10)
,
Günter Steinmeyer
(9)
,
Hamed Merdji
(3, 5)
,
Milutin Kovačev
(1)
1
IQ -
Institut für Quantenoptik [Hannover]
2 QUEST - Centre for Quantum Engineering and Space-time Research
3 LIDyl - Laboratoire Interactions, Dynamiques et Lasers (ex SPAM)
4 KAIST - Department of Electrical Engineering [Korea Advanced Institute of Science and Technology]
5 ATTO - Attophysique
6 Institut für Werkstoffkunde, Leibniz Universität Hannover,
7 Laser Zentrum Hannover
8 MESA+ - Institute for Nanotechnology
9 MBI - Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
10 KAIST - Korea Advanced Institute of Science and Technology
2 QUEST - Centre for Quantum Engineering and Space-time Research
3 LIDyl - Laboratoire Interactions, Dynamiques et Lasers (ex SPAM)
4 KAIST - Department of Electrical Engineering [Korea Advanced Institute of Science and Technology]
5 ATTO - Attophysique
6 Institut für Werkstoffkunde, Leibniz Universität Hannover,
7 Laser Zentrum Hannover
8 MESA+ - Institute for Nanotechnology
9 MBI - Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
10 KAIST - Korea Advanced Institute of Science and Technology
Willem Boutu
- Function : Author
Rana Nicolas
- Function : Author
- PersonId : 973544
Tamas Nagy
- Function : Author
- PersonId : 784420
- ORCID : 0000-0001-5244-0356
Hamed Merdji
- Function : Author
Abstract
We experimentally demonstrate the use of subwavelength optical nanoantennas to assist a direct nanoscale ablation using the ultralow fluence of a Ti:sapphire oscillator through the excitation of surface plasmon waves. The mechanism is attributed to nonthermal transient unbonding and electrostatic ablation, which is triggered by the surface plasmon-enhanced field electron emission and acceleration in vacuum. We show that the electron-driven ablation appears for both nanoscale metallic as well as dielectric materials. While the observed surface plasmon-enhanced local ablation may limit the applications of nanostructured surfaces in extreme nonlinear nanophotonics, it, nevertheless, also provides a method for nanomachining, manipulation, and modification of nanoscale materials. Collateral thermal damage to the antenna structure can be suitably avoided, and nonlinear conversion processes can be stabilized by a dielectric overcoating of the antenna.