Tunable orbital angular momentum in high-harmonic generation - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Nature Communications Year : 2017

Tunable orbital angular momentum in high-harmonic generation


Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions, and the disentanglement and independent control of the intrinsic and extrinsic components of the photon’s angular momentum at short-wavelengths. The methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms.
Fichier principal
Vignette du fichier
Gau.pdf (843.67 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

cea-01536701 , version 1 (24-05-2019)





D. Gauthier, P. Rebernik Ribič, G. Adhikary, A. Camper, C. Chappuis, et al.. Tunable orbital angular momentum in high-harmonic generation. Nature Communications, 2017, 8, pp.14971. ⟨10.1038/ncomms14971⟩. ⟨cea-01536701⟩
90 View
100 Download



Gmail Facebook Twitter LinkedIn More