High-Resolution Two-Field Nuclear Magnetic Resonance Spectroscopy - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Accéder directement au contenu
Article Dans Une Revue Physical Chemistry Chemical Physics Année : 2016

High-Resolution Two-Field Nuclear Magnetic Resonance Spectroscopy

Résumé

Nuclear Magnetic Resonance (NMR) is a ubiquitous branch of spectroscopy that can explore matter on the scale of the atom. Significant improvements in sensitivity and resolution have been driven by a steady increase of static magnetic field strengths. However, some properties of nuclei may be more favourable at low magnetic fields. For example, line-broadening due to chemical shift anisotropy increases sharply at higher magnetic fields. Here, we present a two-field NMR spectrometer that permits the application of rf-pulses and acquisition of NMR signals in two magnetic centres. Our prototype operates at 14.1 T and 0.33 T. The main features of this system are demonstrated by novel NMR experiments that correlate zero-quantum coherences at low magnetic field with single quantum coherences at high magnetic field, so that high resolution can be achieved in both dimensions, despite a ca. 10 ppm inhomogeneity of the low field centre. Two-field NMR spectroscopy offers the possibility to circumvent the limits of high magnetic fields, while benefiting from their exceptional sensitivity and resolution. This approach opens new avenues for NMR above 1 GHz.

Domaines

Matériaux
Fichier principal
Vignette du fichier
pccp2016_Sakellariou_AcceptedVersion.pdf (934.05 Ko) Télécharger le fichier
c6cp05422f1.pdf (703.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Commentaire version acceptée
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-01393871 , version 1 (07-12-2016)

Identifiants

Citer

Samuel F Cousin, Cyril Charlier, Pavel Kadeřávek, Thorsten Marquardsen, Jean-­max Tyburn, et al.. High-Resolution Two-Field Nuclear Magnetic Resonance Spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, pp.33187-33194. ⟨10.1039/C6CP05422F⟩. ⟨cea-01393871⟩
166 Consultations
337 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More