Localized Ligand Induced Electroless Plating (LIEP) Process for the fabrication of copper patterns onto flexible polymer substrates
Abstract
The "ligand induced electroless plating (LIEP) process" is a simple process to obtain localized metal plating onto flexible polymers such as poly(ethylene terephtalate) and polyvinylidene fluoride sheets. This generic and cost-effective process, efficient on any common polymer surface, is based on the covalent grafting by the GraftFast process of a thin chelating polymer film, such as poly(acrylic acid), which can complex copper ions. The entrapped copper ions are then chemically reduced in situ and the resulting Cu0 species act as a seed layer for the electroless copper growth which, thus, starts inside the host polymer. The present work focuses on the application of the LIEP process to the patterning of localized metallic tracks via two simple lithographic methods. The first is based on a standard photolithography process using a positive photoresist masking to prevent the covalent grafting of PAA in designated areas of the polymer substrate. In the second, the patterning is performed by direct printing of the mask with a commercial laser printer. In both cases, the mask was lifted off before the copper electroless plating step, which provides ecological benefits, since only the amount of copper necessary for the metallic patterning is used.