Study of positive electrode materials for lithium-ion batteries by experimental and theoretical soft and hard X-ray photoemission spectroscopy - Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux Accéder directement au contenu
Thèse Année : 2024

Study of positive electrode materials for lithium-ion batteries by experimental and theoretical soft and hard X-ray photoemission spectroscopy

Etude des matériaux d'électrode positive pour accumulateurs lithium-ions par spectroscopie de photoémission à rayonnement X mous et durs expérimentale et théorique

Résumé

This thesis has the objective to understand the redox compensation mechanism of positive electrode materials sustaining lithium-ion battery (dis-)charge processes. The study is conducted for LiNiO2, Li2MnO3, and LiCoO2, archetype materials for the state-of-art high-energy positive electrode materials Li[NixMnyCoz]O2. Despite these materials having been studied for decades, the link between electronic correlations and redox mechanism during (de-)lithiation is not well understood. In particular, the role of transition metals and oxygen ions in the redox process is yet to be clarified and resolved in-depth from the surface towards the bulk.To this goal, we establish a novel methodology based on laboratory- and synchrotron-based soft and hard X-ray photoemission spectroscopy (XPS, HAXPES) to probe qualitatively and quantitatively the electronic structure from the extreme surface down to ~20-30 nm. This allows us to follow the evolution of positive solid electrode-electrolyte interphase, surface electrode material degradation, and bulk electronic structure upon cycling. Notably, the thickness and chemical structure of the surface degradation layer depends on the increase of oxygen valence, related to its interaction with the transition metal. Subsequently, we investigate the evolution of the bulk electronic structure upon cycling by analyzing the transition metal 2p core-level HAXPES spectra with electronic structure simulations based on density functional (DFT) and cluster model (CMT) theories. We evaluate the role of transition metals and oxygen in the redox process by quantifying the 3d-3d Coulomb repulsion and oxygen ligand-metal 2p-3d charge transfer (Δ). The spectra analysis for LiCoO2 and LiNiO2 highlights a decrease of Δ towards the negative charge transfer regime indicating a leading role of the oxygen ions in the charge compensation mechanism. The delithiation process is therefore controlled by the local electron transfer from oxygen 2p orbitals to limit charge accumulation in the metal 3d orbitals.
Le succès des oxydes de métaux de transition lamellaires (LiMO2, M : Ni, Co, Mn) en tant que matériaux d’électrode positive est dû à leurs capacités à intercaler de manière réversible les ions lithium en préservant l’intégrité cristalline de l’électrode. Bien que les LiMO2, soit largement étudiés et utilisés, les mécanismes en jeu à l’échelle électronique lors de la désinsertion/insertion du lithium ne sont toujours pas clarifiés. Cette thèse a pour objectif d’appréhender les mécanismes de compensation de charge dans les matériaux d'électrode positive LiMO2 pendant leur cyclage. En particulier, le rôle des métaux de transition et des ions d'oxygène dans le processus d'oxydoréduction reste à élucider en différenciant les processus de surface de ceux du bulk du matériau.Pour ce faire, grâce à une approche qualitative et quantitative basée sur la spectroscopie de photoémission de rayons X de laboratoire et synchrotron, mous et durs (XPS, HAXPES), nous avons résolu la structure électronique et chimique des électrodes LixMO2 depuis l'extrême surface jusqu'à ~20-30 nm. Nous avons mis en évidence des points communs et des différences sur la nature chimique et l’épaisseur de la couche de passivation de surface « solide electrolyte interphase- SEI », la structure électronique à proximité de la SEI et dans le volume des électrodes en fonction de la nature du métal de transition. Le couplage entre HAXPES et simulation à base de model de cluster (CMT) et de théorie de la fonctionnelle de densité (DFT) a permis de réinterpréter le rôle de l’oxygène dans les processus de transfert de charge. Ainsi, nous avons identifié, à chaque étape de la déinsertion du lithium dans LixMO2, la contribution de la répulsion Coulombique « 3d-3d » et le transfert de charge « 2p-3d » entre l'oxygène et le métal (Δ). L'analyse expérimentale et théorique des spectres des niveaux de cœur des composés LiCoO2 et LiNiO2 à différents stades de la delithiation a mis évidence la présence d’un régime de transfert de charge négatif indiquant le rôle prépondérant des ions oxygène dans le mécanisme de compensation de charge.
Fichier principal
Vignette du fichier
FANTIN_2024_archivage.pdf (19.95 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04659960 , version 1 (23-07-2024)

Identifiants

  • HAL Id : tel-04659960 , version 1

Citer

Roberto Fantin. Study of positive electrode materials for lithium-ion batteries by experimental and theoretical soft and hard X-ray photoemission spectroscopy. Materials Science [cond-mat.mtrl-sci]. Université Grenoble Alpes [2020-..], 2024. English. ⟨NNT : 2024GRALI027⟩. ⟨tel-04659960⟩
0 Consultations
0 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More