Systematic investigation of sensitivity of sulfide-based solid electrolytes for lithium-ion batteries towards humidity - CEA Grenoble Access content directly
Conference Poster Year : 2022

Systematic investigation of sensitivity of sulfide-based solid electrolytes for lithium-ion batteries towards humidity

Abstract

All-solid-state lithium-ion batteries (ASSLIBs) attract huge interest of researchers and battery manufacturers since they are the most promising candidates for future safe energy storage devices with high energy density for electric transport. However, an important obstacle for wide commercialization of sulphide-based solid electrolytes (SSEs) for LIBs is their extremely high reactivity with traces of humidity leading to toxic H2S evolution. Therefore, a deep understanding of reactivity of SSEs with water is a key factor to optimise intrinsic characteristics of SSEs as well as a production process of ASSLIBs ensuring its safety and reliability. Very limited amount of literature data is available on the topic . In this work, reactions between SSEs and water were investigated with high precision using a home-made test assembly. Commercially available SSEs, such as Li$_3$PS$_4$, Li$_7$P$_3$S$_{11}$ Li$_{10}$GeP$_2$S$_{12}$, Li$_6$PS$_5$Cl and Li$_6$PS$_5$Br were investigated at different scales (from few milligrams to 1g). The developed test assembly is based on gas flow-through cell for the analysis of SSE powders and pellets and continuous H2S measurements thanks to ultra-sensitive laser detection equipment. Specific attention was paid to reproducibility of the results. The levels of humidity were chosen to mimic a dry room atmosphere. A strong relationship was found between the composition of SSEs, their surface area and reactivity towards humidity. Passivation phenomena were observed in some cases upon exposure to H$_2$O. Additional advanced characterisation methods helped to understand the differences in reactivity of SSEs with water.
Fichier principal
Vignette du fichier
I_Profatilova_abs.pdf (187.07 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

cea-04048257 , version 1 (27-03-2023)

Identifiers

  • HAL Id : cea-04048257 , version 1

Cite

Irina Profatilova, Ivan Leteyi Mfiban, Vasily Tarnopolskiy, Magali Reytier. Systematic investigation of sensitivity of sulfide-based solid electrolytes for lithium-ion batteries towards humidity. International Bunsen Discussion Meeting Solid-state Batteries V (SSB V), Nov 2022, Frankfort, Germany. , 2022. ⟨cea-04048257⟩
91 View
3 Download

Share

Gmail Mastodon Facebook X LinkedIn More