When neural networks using different sensors create similar features - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Communication Dans Un Congrès Année : 2022

When neural networks using different sensors create similar features

Andréa Vassilev
  • Fonction : Auteur
Liming Chen

Résumé

Multimodal problems are omnipresent in the real world: autonomous driving, robotic grasping, scene understanding, etc... Instead of proposing to improve an existing method or algorithm: we will use existing statistical methods to understand the features in already-existing neural networks. More precisely, we demonstrate that a fusion method relying on Canonical Correlation Analysis on features extracted from Deep Neural Networks using different sensors is equivalent to looking at the output of the networks themselves.
Fichier non déposé

Dates et versions

cea-04793670 , version 1 (20-11-2024)

Identifiants

Citer

Hugues Moreau, Andréa Vassilev, Liming Chen. When neural networks using different sensors create similar features. MOBICase 2021 - Mobile Computing, Applications, and Services: 12th EAI International Conference, Nov 2021, (Virtual event), China. pp.69-82, ⟨10.1007/978-3-030-99203-3_5⟩. ⟨cea-04793670⟩

Collections

CEA
0 Consultations
0 Téléchargements

Altmetric

Partager

More