Probing the local structure of nanoscaled actinide oxides: A comparison between PuO$_2$ and ThO$_2$ nanoparticles rules out PuO$_{2+x}$ hypothesis - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Article Dans Une Revue Nanoscale Advances Année : 2019

Probing the local structure of nanoscaled actinide oxides: A comparison between PuO$_2$ and ThO$_2$ nanoparticles rules out PuO$_{2+x}$ hypothesis

Résumé

Actinide research at the nanoscale is gaining fundamental interest due to environmental and industrial issues. The knowledge of the local structure and speciation of actinide nanoparticles, which possibly exhibit specific physico-chemical properties in comparison to bulk materials, would help in a better and reliable description of their behaviour and reactivity. Herein, the synthesis and relevant characterization of PuO$_2$ and ThO$_2$ nanoparticles displayed as dispersed colloids, nanopowders or nanostructured oxide powders, allow to establish a clear relationship between the size of the nanocrystals composing these oxides and their corresponding An(IV) local structure investigated by EXAFS spectroscopy. Particularly, the probed An(IV) first oxygen shell evidences an analogous behaviour for both Pu and Th oxides. This observation suggests that the often observed and controversial splitting of the Pu-O shell on the Fourier transformed EXAFS signal of PuO$_2$ samples is attributed to a local structural disorder driven by a nanoparticle surface effect rather than to the presence of PuO$_{2+x}$ species.
Fichier principal
Vignette du fichier
2020 Bonato - Probing the Local Structure of AnO2 NPs.pdf (1.38 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

cea-03923002 , version 1 (04-11-2024)

Licence

Identifiants

Citer

Laura Bonato, Matthieu Virot, Thomas Dumas, Adel Mesbah, Elodie Dalodiere, et al.. Probing the local structure of nanoscaled actinide oxides: A comparison between PuO$_2$ and ThO$_2$ nanoparticles rules out PuO$_{2+x}$ hypothesis. Nanoscale Advances, 2019, pp.214-224. ⟨10.1039/C9NA00662A⟩. ⟨cea-03923002⟩
41 Consultations
3 Téléchargements

Altmetric

Partager

More