Impact of materials technology on the breeding blanket design Recent progress and case studies in materials technology
Résumé
A major part in the EUROfusion materials research program is dedicated to characterize and quantify nuclear
fusion specific neutron damage in structural materials. While the majority of irradiation data gives a relatively
clear view on the displacement damage, the effect of transmutation █ i.e. especially hydrogen and helium production
in steels █ is not yet explored very well. However, few available results indicate that EUROFER-type
steels will reach their operating limit as soon as the formation of helium bubbles reaches a critical amount or
size. At that point, the material would fail due to embrittlement at the considered load.
This paper presents a strategy for the mitigation of the before-mentioned problem using the following facts:
• the neutron dose and related transmutation rate decreases quickly inside the first wall, that is, only
a plasma-near area is extremely loaded
• nanostructured oxide dispersion strengthened (ODS) steels may have an enormous trapping effect
on helium and hydrogen, which would suppress the formation of large helium bubbles
• compared to conventional steels, ODS steels show improved irradiation tensile ductility and creep
strength
In summary, producing the plasma facing, highly neutron and heat loaded part of blankets by an ODS steel,
while using EUROFER97 for everything else, would allow a higher heat flux as well as a longer operating period.
Consequently, we (1) developed and produced 14 % Cr ferritic ODS steel plates. (2) We fabricated a mockup
with 5 cooling channels and a plated first wall of ODS steel, using the same production processes as for a real
component. And finally, (3) we performed high heat flux tests in the HELOKA facility (Helium Loop Karlsruhe at
KIT) applying short and up to 2 h long pulses, in which the operating temperature limit for EUROFER97 (i.e., 550
◦C) was finally exceeded by 100 K. Thereafter, microstructure and defect analyses did not reveal defects or
recognizable damage. Only a heat affected zone in the EUROFER/ODS steel interface could be detected. This
demonstrates that the use of ODS steel could make a decisive difference in the future design and performance of
breeding blankets.