Optimizing and extending the functionality of EXARL for scalable reinforcement learning - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Conference Poster Year :

Optimizing and extending the functionality of EXARL for scalable reinforcement learning

Fichier principal
Vignette du fichier
rpost145s2-file2.pdf (1.77 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

cea-03780809 , version 1 (19-09-2022)

Identifiers

  • HAL Id : cea-03780809 , version 1

Cite

Sai Chenna, Katherine Cosburn, Uchenna Ezeobi, Maxim Moraru, Hyun Lim, et al.. Optimizing and extending the functionality of EXARL for scalable reinforcement learning. SC21 - Supercomputing 2021, Nov 2021, Saint-Louis, United States. . ⟨cea-03780809⟩

Collections

CEA URCA
20 View
63 Download

Share

Gmail Facebook Twitter LinkedIn More