Estimating linear mass transport coefficients in solid solutions via correlation splitting and a law of total diffusion - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Article Dans Une Revue Physical Review Materials Année : 2022

Estimating linear mass transport coefficients in solid solutions via correlation splitting and a law of total diffusion

Résumé

Directly computing linear mass transport coefficients in stochastic models entails integrating over time the equilibrium correlations between atomic displacements. Here, we show how to improve the accuracy of kinetic Monte Carlo simulations via correlation splitting and conditioning, which statistically amounts to estimating the mass transport coefficients through a law of total diffusion. We illustrate the approach with kinetic path sampling simulations of atomic diffusion in a random alloy model in which percolating solute clusters trap the mediating vacancy. There, Green functions serve to generate first-passage paths escaping the traps and to propagate the long-time dynamics. When they also serve to estimate mean-squared displacements via conditioning, colossal reductions of statistical errors are achieved.
Fichier principal
Vignette du fichier
prm_2022.pdf (591.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-03745969 , version 1 (04-08-2022)

Identifiants

Citer

Manuel Athenes, Gilles Adjanor, Jérôme Creuze. Estimating linear mass transport coefficients in solid solutions via correlation splitting and a law of total diffusion. Physical Review Materials, 2022, 6, pp.013805. ⟨10.1103/PhysRevMaterials.6.013805⟩. ⟨cea-03745969⟩
25 Consultations
105 Téléchargements

Altmetric

Partager

More